• Title/Summary/Keyword: 웨어러블 시스템

Search Result 284, Processing Time 0.03 seconds

The Companion Animal Monitoring System using Low-Power Protocol Wearable Device

  • Kim, Woo-Chan;Kim, Soo Kyun;Kwak, Ho-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.17-23
    • /
    • 2020
  • As the number of households with companion animals increases, the demand to monitor the health of companion animals in remote locations far away is increasing. We are going to put a wearable device on a companion animal so that it can monitor the heart beat signal from a remote location. However, the monitoring method using Bluetooth has some disadvantages. it can be accessed only in a short distances. In case of WiFi, large power consumption is the problem. To overcome these issues, we propose a system to reduce power consumption by indirectly receiving a user's request using Bluetooth at a time when the user does not need it, and sending sensor data through WiFi when the user makes a monitoring request.

Membrane Based Triboelectric Nanogenerator: A Review (막 기반 마찰전기 나노 발전기: 총설)

  • Rabea Kahkahni;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Mechanical energy can be harvested by triboelectric nanogenerators (TENG) from biological and environmental systems. In wearable electronics, TENG has a lot of significance as biomechanical energy can be harvested from the motion of humans, which is applied in vibrational sensors. Wearable TENG is prone to moisture and polytetrafluoroethylene (PTFE) is an excellent hydrophobic material used in these applications. The presence of highly electronegative fluorine atoms leads to very low surface energy. At the same time, the performance of the device increases due to the efficient capture of the electrons on the microporous membrane surface. This similar behavior occurs with polyvinylidene fluoride (PVDF) due to the presence of fluoride atoms, which is relatively less as compared to PTFE.

Wearable based Electrocardiogram Sensing Clothes for Monitoring of Vital Signal (생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복)

  • Yu, Ki-Youp;Han, Ki-Tae;Kim, Ju-Hyun;Kim, Jong-Hun;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.277-278
    • /
    • 2009
  • 차세대 하이테크 스마트 의류는 복합 차원에서의 감성적인 요소를 섬유 패션기술에 IT융합 기술을 이용하여 제공하고 있다. 생체신호를 이용한 감성은 모호하여 정량적이고 객관적인 측정이 어렵고, 그 표현도 제한된 감성 어휘에 의하여 나타나기 때문에 구체적으로 파악하는 것은 어려운 일이다. 이를 위하여 제품의 기능적 측면뿐만 아니라 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 논문에서는 생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복을 제안하였다. 착용자가 평소 자주 입는 티셔츠를 응용하여 답답해하거나 불편하지 않게 제작하고 소매 형태로 신축성있는 소재를 사용한다. 인체의 형태에 따라 의복과 바이오센서의 전극이 안정적으로 밀착될 수 있도록 고탄력 밴드를 이용하여 일자형으로 제작하였다. 심전도 측정 의복을 착용에 의해 수집된 심전도 ECG 파형을 수집하고 심박변화율을 계산하는 시뮬레이션을 개발한다.

Implementation of a Real-Time Biometric Monitoring System for an Elderly Living Alone (독거노인을 위한 실시간 생체 모니터링 시스템 구현)

  • Myeong-Chul Park;Ji-Hoon Lee;Gyung-Hwan Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.255-256
    • /
    • 2024
  • 고령화가 가속되면서 독거노인의 사회적 고립으로 인해 신체, 정신적 어려움이 발생하고 고독사하는 노인들의 수가 증가해 사회적 문제가 되고 있다. 또한 독거노인 관리를 위한 정부 인력은 한정되어 한 명이 담당해야 하는 사람의 수가 너무 많아 수많은 독거노인의 안전과 복지를 보장하는 데 현실적인 어려움이 있다. 이에 따라 본 논문에서는 독거노인의 안전과 복지를 책임지기 위해 IoT와 각종 센서를 활용하여 생체 정보를 수집하는 웨어러블 기기를 제작하고 데이터베이스 서버를 활용한 IT 인프라 구축을 통해 적은 인력으로 효율적인 의료 지원을 목표로 한다. 본 논문은 독거노인의 거주 환경에서 생체 데이터를 수집하고 이를 효과적으로 분석하여 컴퓨터를 통해 실시간으로 모니터링이 가능하다. 이는 고독사 상황을 사전에 감지할 뿐만 아니라 노인들의 일상생활에서 발생할 수 있는 위험 상황에 즉각적인 대처를 통해 독거노인의 안전 및 복지 수준 향상에 기여하고 나아가 소외 계층의 의료 환경 개선에 도움이 될 것으로 예측된다.

  • PDF

Emergency Support System using Smart Device (스마트 기기를 활용한 응급 지원 시스템)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1791-1798
    • /
    • 2016
  • Recently, research about ESS(Emergency Support System) has been actively carried out to provide a variety of medical services using smart devices and wearable devices. Smart healthcare provides a personalized health care service using various types of bio-signal measuring sensors and smart devices. For the smart healthcare using a smart device, it is need to research about personal health monitoring using a smart wearable devices, and also need to research on service methods for first aid measures after an emergency. In this paper, we proposed about group management based emergency support system, that is monitoring about personal bio signal using smart devices and wearable devices to protect patient's life. The system notices to the medical volunteers based on the position information when an emergency situation. In addition, we have designed and implemented an emergency support system providing the information of the patient on the display when transmitting a picture of a patient using a smart device to the server.

M2M Technology based Global Heathcare Platform (M2M 기반의 글로벌 헬스케어 시스템 플랫폼)

  • Jung, Sang-Joong;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2435-2441
    • /
    • 2010
  • A global healthcare system based on M2M technology is proposed to support a good mobility, flexibility and scalability to the patients in 6LoWPAN. Sensor nodes integrated with wearable sensors are linked to gateway with IEEE 802.15.4 protocol and 6LoWPAN protocol for data acquisition and transmission purpose via external network. In the server, heart rate variability signals are obtained by signal processing and used for time and frequency domain performance analysis to evaluate the patient's health status. Our approach for global healthcare system with non-invasive and continuous IP-based communication is managed to process large amount of biomedical signals in the large scale of service range accurately.

Implementation of Real-time Heart Activity Monitoring System Using Heart Sound (심음을 이용한 실시간 심장 활동 상태 모니터링 시스템 구현)

  • Kim, Jin-Hwan;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.14-19
    • /
    • 2018
  • Recently, the smart health care industry has been rising rapidly and interest and efforts for public health have been greatly increased. As a result, the public does not visit medical specialists and medical facilities, but the desire to check their health condition in everyday life is increased. Therefore, many domestic and foreign companies continuously research and develop wearable devices that can measure body activity information anytime and anywhere And the market. Especially, it is used for heart activity measurement device using pulse wave sensor and electrocardiogram sensor. However, in this study, a monitoring system that can detect cardiac activity using cardiac sounds, heart sound measurement rather than pulse wave measurement and electrocardiogram measurement, was performed and its performance was evaluated. Experimental results confirmed the predictability of cardiac heart rate and heart valve disease during daily living.

Autonomous Mobile Robot Control using the Wearable Devices Based on EMG Signal for detecting fire (EMG 신호 기반의 웨어러블 기기를 통한 화재감지 자율 주행 로봇 제어)

  • Kim, Jin-Woo;Lee, Woo-Young;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.176-181
    • /
    • 2016
  • In this paper, the autonomous mobile robot control system for detecting fire was proposed using the wearable device based on EMG(Electromyogram) signal. Myo armband is used for detecting the user's EMG signal. The gesture was classified after sending the data of EMG signal to a computer using Bluetooth communication. Then the robot named 'uBrain' was implemented to move by received data from Bluetooth communication in our experiment. 'Move front', 'Turn right', 'Turn left', and 'Stop' are controllable commands for the robot. And if the robot cannot receive the Bluetooth signal from a user or if a user wants to change manual mode to autonomous mode, the robot was implemented to be in the autonomous mode. The robot flashes the LED when IR sensor detects the fire during moving.

Design of FPGA-based Wearable System for Checking Patients (환자 체크를 위한 FPGA 기반 웨어러블 시스템 설계)

  • Kang, Sungwoo;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.477-479
    • /
    • 2017
  • With the recent advances in medical technology and health care, the prevention and treatment of diseases has developed. Accordingly aging has rapidly progressed. In this life span and aging society, demand for diagnostic centered medical care is increasing rapidly. In this paper, we propose a wearable patient check system based on FPGA that can be controlled by sensors. In the existing hospital, a doctor or nurse visited the patient every hour to check the condition. However, in this paper, patients, doctors and nurses can check the patient's condition at the desired time using patient check system. In addition, the tilt sensor is used for the patient who is uncomfortable to easily control. The proposed FPGA-based hardware architecture consists of an algorithm for enlarged image processing, a TFT-LCD Controller, a CIS Controller, and a Memory Controller to output the patient's status image. Implemented and validated using the DE2-115 test board with Cyclone IV EP4CE115F29C7 FPGA device and its operating frequency is 50MHz.

  • PDF

Cryptanalysis and Solution on Secure Communication Scheme for Healthcare System using Wearable Devices (웨어러블 장치를 이용한 헬스케어시스템을 위한 안전한 통신 기법에 대한 분석 및 해결책)

  • Choi, Hae-Won;Kim, Sangjin;Ryoo, Myungchun
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.187-194
    • /
    • 2019
  • A security company has been proposed for various healthcare systems. However, there are improvements in order to achieve better efficiency and stability in the various protocols presented. The purpose of this paper is to provide cryptanalysis and solution on Vijayakumar et al.'s secure communication scheme for healthcare system using wearable devices. Especially, it is weak against denial of service attack and it does not provide integrity of the transmitted messages. Thereby, this paper proposes a new secure communication scheme to cope from the problems in Vijayakumar et al.'s scheme. It provides authentication and integrity, which could be the security solution against Vijayakumar et al.'s scheme. Furthermore, it also provides a good computational overhead compared to Vijayakumar et al.'s scheme.