본 논문에서는 일반화우도비검정(generalized likelihood ratio test: GLRT)에 있는 모르는 파라미터(표적의 크기, 클러터의 파라미터)를 최대우도추정(maximum likelihood estimation: MLE) 방법 또는 Newton-Raphson method를 통해 추정하는 방법에 대해서 제안하였다. 클러터 환경에서 표적을 탐지할 경우, 실제 환경과 유사하게 클러터의 수식적인 모델을 세우는 것이 중요하다. 이러한 서로 상관된 클러터 모델은 SIRV(Spherically Invariant Random Vector)를 이용하여 생성할 수 있다. 생성된 클러터 모델에 대한 일반화우도비검정 식을 세우고, 추정된 파라미터에 대한 일반화우도비검정의 탐지확률을 모의실험을 통해 확인하였다.
스마트폰 시장이 급속하게 성장함에 따라 보안위협도 동시에 증가하고 있다. 가장 큰 스마트폰 보안위협 중 하나는 스마트폰 마켓에 안전성이 검증되지 않은 어플리케이션이 유통되고 있다는 점이다. 안드로이드 마켓의 경우 어플리케이션 검증을 수행하지 않아 악성 어플리케이션이 유통되고 있는 상황이다. 이와 같이 마켓을 통해 유포되는 악성 어플리케이션에 대응하기 위해서는 안드로이드 어플리케이선의 악성 행위 여부를 탐지할수 있는 기술이 필요하다. 본 논문에서는 안드로이드 어플리케이션의 악성행위를 탐지할 수 있는 분석 방법을 제안하고 구현내용을 소개하고자 한다.
현재 한국해양과학기술원에서는 선박비행체 탑재용 복합센서를 개발 및 시험 적용 중에 있다. 그러나 얻어진 영상 데이터를 통해서는 목표물에 대한 정확한 위치 정보를 파악할 수 없다. 또한 크기가 큰 물체도 거리가 멀면 영상에선 작아 보이기 때문에 목표물의 크기 또한 파악하기 힘들다. 이를 보완하기 위해 본 연구에서는 복합센서를 통해 획득한 영상에 대해 warping 및 기하보정, 선박 및 익수자 자동 탐지 알고리듬, 위치 및 계수 정보 산출에 대해 소개한다. 또한 실제 실험을 통해 해당 알고리듬을 검증하였다.
수산자원의 현존량을 추정함에 있어, 계량어군탐지기(이하, 계량어탐 이라 한다)를 이용한 음향자원량 조사는 넓은 수역을 단시간에 조사 가능한 효율적인 방법으로서 확립되어 있다. 한편, 최근에 멸치, 꽁치 등의 표층어종의 자원량조사의 필요성이 높아지고 있지만, 계량어탐은 수직 빔을 이용하므로, 표층의 탐지범위가 좁고, 어군의 선체도피행동이나 표층 데드죤이 존재한다. 그 때문에, 표층을 광범위하게 탐지 가능한 소너를 이용한 자원량 추정법의 개발이 요구되고 있다. (중략)
본 논문에서는 실시간에 강체 운동을 하는 일반적인 모델사이의 효율적인 충돌검사 알고리즘을 제안한다. 기존의 경계볼륨 알고리즘에 계층적 구조를 적용하였다. 이는 볼록한 물체를 위한 보로노이 영역 기반의 충돌검사 알고리즘을 오목한 물체에도 적용할 수 있도록 확장한다. 추가적으로 빠르게 움직이는 물체에 대한 관통을 탐지하기 위해서 물체의 이동 경로에 대한 교차 검사를 진행한다. 구현된 알고리즘은 일반적인 응용에서 기대한 성능 향상을 얻을 수 있다.
인터넷 기술의 발전과 더불어 서비스 거부 공격(DoS : Denial of Service) 방법과 유형이 날로 다양해지고 있다. DoS 공격은 사용자 시스템에 네트워크 트래픽의 과도한 부하를 주어 서비스를 마비시키거나 시스템을 다운시킨다. DoS공격은 빠른 시간 안에 시스템을 위협하는 특징 때문에, 빠른 대처가 필요하다. 이러한 점에 착안하여 본 논문에서는 DoS 공격상황에서의 위험상황을 모델링 한다. 제안된 모델링은 패킷분석에 기반 하여 의미 있는 요소들을 찾아내고, 수식화 해서 위험 탐지 모델을 정의한다. 제안된 모델링을 통해서 DoS공격을 효과적으로 대처할 수 있을 것으로 기대된다.
웹페이지나 디지털 문서에는 특정 단어나 특정 문구를 검색하는 기능이 있다. 인쇄된 도서나 참고서 등과 같은 인쇄물에는 실시간으로 특정 단어나 특정 문구를 찾는 기능이 없어 어려움을 겪는 경우가 많다. 본 논문에서는 텍스트를 감지(Detection)하는 EAST 모델과 텍스트를 인식(Recognition)하는 EasyOCR을 활용한 실시간 문자 탐지 시스템의 개발내용에 대해 기술한다. 이 시스템을 통해 사용자는 인쇄물에서 실시간으로 원하는 단어나 문구를 찾아 필요한 정보를 빠르게 읽는 것에 효과적일 것을 기대한다.
네트워크 대역폭 소모 위주로 발생했던 DDoS 공격이 최근에는 웹서비스 대상 응용계층에서의 DDoS 공격 위주로 발생하고 있다. 응용계층 DDoS 공격은 Source IP당 발생하는 트래픽이 감소하고 정상 사용자의 트래픽과 유사한 형태로 진화하고 있어 기존 Threshold 기반 탐지기법으로 대응하기 어렵다. 본 논문에서는 발생 가능한 Get Flooding의 모든 유형을 도시하고, 간단하면서도 강력한 3가지 대응 메커니즘을 제시한다. 특허, 제안된 메커니즘은 현재까지 발생한 모든 DDoS 공격도구를 탐지 및 차단할 수 있으며, 성능분석 결과 상용 환경에 적용할 수 있을 것으로 예상된다.
산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.
최근 지구온난화 및 인간 활동 등에 의해 전지구적으로 산불발생이 빈번해지고 있으며, 산불의 규모가 대형화되고 지속기간이 길어지는 경향을 보이면서, 산불 피해 또한 급증하고 있다. MODIS는 20년 가까이 전지구 산불탐지 정보를 제공하고 있고, GK2A와 Himawari-8은 1일 144회의 빈도로 동아시아권의 산불감시를 수행하고 있지만, 1~2 km의 공간해상도는 중·소 규모 산불탐지에 있어서는 충분하지 않으므로 고해상도 위성영상을 이용한 산불탐지 연구가 반드시 필요하다. 그러나 타고있는 산불탐지(active fire detection)에 대한 고해상도 산출물은 현재 공식적으로 존재하지 않는다. 이에, 본연구에서는 Landsat 8 산불탐지 알고리듬을 구현하여 고해상도 산불탐지를 수행하였으며, 최근의 대표적인 산불사례인 2019년 12월 호주 대형산불에 대하여 Landsat 8 탐지 결과를 Himawari-8, MODIS 산출물과 비교하였다. 강한 산불의 경우에는 세 위성 모두 유사한 결과를 보였지만, 타기 시작하거나 진화되고 있는 약한 산불 및 좁은 지역에 발생한 산불은 30m 해상도의 Landsat 8에서만 탐지되었고, 1~2 km 해상도의 Himawari-8나 MODIS에서는 탐지되지 않는 경향이 있었다. 우리나라와 같이 소규모 산불이 대부분인 경우에는 Landsat 8, Sentinel-2, Kompsat-3A, 그리고 2021년 발사예정인 Kompsat-7과 같은 고해상도 위성을 이용한 산불탐지가 가능할 것이며, GK2A, Himawari-8, Fengyun-3 등 동아시아 정지궤도 위성의 탐지결과와 함께 종합적인 분석을 수행한다면, 시간해상도와 공간해상도를 현재보다 향상시키는 것이 가능할 것이다. 이러한 진보된 산불감시를 위해서는 우리나라의 복잡지형에 보다 적합한 한국형 고해상도 산불탐지 알고리듬의 개발이 무엇보다 선행되어야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.