• Title/Summary/Keyword: 원하는 형상

Search Result 1,336, Processing Time 0.027 seconds

A Study on the Structure of Hybrid Magnetic Gear with Armature Type Rotor (전기자 형태의 회전자를 갖는 하이브리드 마그네틱 기어의 구조에 관한 연구)

  • Gim, Chan-Seung;Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1235-1242
    • /
    • 2018
  • When the wind speed changes rapidly, the wind turbine is stopped for the safety of the power system and the mechanical system. At that moment, the wind turbine gearbox is damaged and broken due to the contact load of the gearbox. In addition, the problems such as increasing frictional heat and deteriorate of the brake occur, because the power of the blades is transmitted directly to the brakes. This paper proposes a hybrid magnetic gear shape that solves the problem caused by the contact of the mechanical gear, which is the power transmission device of the wind power generation system, and the power cutoff system. The shape of the hybrid magnetic gearsuitable for the wind power generation system is derived through the torque and loss analysis according to the shape of the hybrid magnetic gear by using the two dimensional finite analysis method.

Pavement Response in Flexible Pavements using Nonlinear Tire Contact Pressure and Measured Tire Contact Area (타이어의 접지 면적과 비선형 접지압력을 고려한 연성포장내의 거동 분석)

  • Jo, Myoung Hwan;Kim, Nakseok;Jeong, Jin-Hoon;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.601-608
    • /
    • 2006
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. In this study, finite element analysis was used to identify the three-dimension states using nonlinear tire contact pressure and measured tire contact area. Measured tire contact area was quite different from the assumed tire contact area, and it resulted in different strain states under the tire. At the surface course, considering tire rib and nonlinear tire pressure, the pavement response presented accurate data compared to the predicted one. However, at the binder course, tire effects were generally negligible and it showed that the predicted pavement response was different compared to the measured one.

Generation and Validation of Finite Element Models of Computed Tomography for Unidirectional Composites Using Supervised Learning-based Segmentation Techniques (지도학습 기반 분할기법을 이용한 단층 촬영된 단방향 복합재료의 유한요소모델 생성 및 검증)

  • Taeyi Kim;Seong-Won Jin;Yeong-Bae Kim;Jae Hyuk Lim;YunHo Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.395-401
    • /
    • 2023
  • In this study, finite element modeling of unidirectional composite materials of the computed tomography (CT) was conducted using a supervised learning-based segmentation technique. Firstly, Micro-CT scan was performed to obtain the raw volume of unidirectional composite materials, providing microstructure information. From the CT volume images, actual microstructure of the cross-section of unidirectional composite materials was extracted by the labeling process. Then, a U-net deep learning model was trained with a small number of raw images as inputs and their labeled images as outputs to generate a segmentation model. Subsequently, most of remaining images were input to the trained U-net deep learning model to segment all raw volume for identifying complex microstructure, which was used for the generation of finite element model. Finally, the fiber volume fraction of the finite element model was compared with that of experimentally measured volume to validate the appropriateness of the proposed method.

A Method to Predict the Open-Hole Tensile Strength of Composite Laminate (원공을 가지는 복합재 적층판의 인장강도 예측 기법)

  • Lee, Heun-Ju;Shin, In-Soo;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.29-35
    • /
    • 2011
  • The characteristic length method used to determine a laminate's strength generally requires the test for un-notched and notched laminates and finite element analysis together. In this paper, the methods used to predict the stress distribution and tensile characteristic length of open-hole laminates using the stress concentration factor and equivalent material properties are proposed. These methods do not require data on the failure load of open-hole laminates or finite element analysis. Once the stress and characteristic length have been determined, the failure load of the open-hole laminate can be calculated. The proposed method considers the effect of the material properties as a parameter and therefore can be applied to a variety of materials. The stress distribution is verified by comparing with a finite element analysis and test results. The predicted failure load shows a maximum deviation of 8% from the test results.

Numerical Experiments of Shallow Water Eqs. by FEM (유한요소법을 이용한 천수방정식의 수치실험)

  • Choi, Sung Uk;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.141-150
    • /
    • 1990
  • Numerical experiments of sballow water equations are performed under various boundary conditions by finite element method to simulate the circulation in estuaries and coastal areas. Galerkin method is employed to discretize spatial domain, and for time integration, finite difference method (Crank-Nicolson scheme) is used. This method is tested in five problems, in which first four cases have analytic solutions. The computed values are well in agreement with the analytic solutions in four experiments and the result of the last 2-dimensional ease is resonable. Implicit and two step Lax-Wendroff schemes in time domain are compared, and the results when using four node bilinear and triangular elements are presented. Consequently it takes very long time for complex problems requiring many elements to integrate all the time steps using the implicit schemes. And the explicit scheme requires careful consideration in selecting the time step and the grid size to obtain the desired accuracy.

  • PDF

A Simulation of Advanced Multi-dimensional Isotachophoretic Protein Separation for Optimal Lab-on-a-chip Design (최적화된 Lab-on-a-chip 설계를 위한 향상된 다차원 프로틴 등속영동 시뮬레이션)

  • Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1475-1482
    • /
    • 2009
  • In this paper, a computer simulation is developed for isotachophoretic protein separation in a serpentine micro channel for optimal lab on a chip design using 2D Finite Element Method. This 2D ITP model is composed of 5 components such as hydrochloric acid as Leader, caproic acid as terminator, acetic acid and benzoic acid as two proteins, and histindine as background electrolyte. The computer model is based on mass conservation equation for 5 components, charge conservation equation for electric potential, and electro neutrality condition for pH calculation. For the validation of the 2D spatial ITP model, the results are compared with the Simul5 developed by Bohuslav Gas Group. The simulation results are in a good agreement in a ID planar channel. This proves the precision of our model. The 2Dproteinseparation is conducted in a 2D curved channel for Lab on a chip design and dispersions of proteins are revealed during the electrophoretic process in a curved shape.

Effect of Sinuosity on Vertical Distribution of Streamwise Velocity in Open Channel Flow (개수로 흐름에서 사행도가 흐름방향 유속의 연직분포에 미치는 영향)

  • Seo, Il Won;Baek, Donghae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.168-168
    • /
    • 2015
  • 자연하천의 주요한 특징 중 하나인 하천의 사행은 직선수로에서 예측되는 유속분포를 왜곡시키며 매우 복잡한 흐름구조를 형성한다. 이는 하상 경계면에서 발생하는 전단응력 분포의 변화를 야기하는데 하상 경계면에서의 전단응력은 다양한 경험적 관계에 의존하는 유사이동의 한계 소류력 산정 및 오염물질 거동해석의 분산계수 산정에 많은 영향을 미치게 된다. 물리적인 관측을 통한 하상 경계면에서의 전단응력의 관측은 다소 제한적이며 많은 비용을 요구한다. 따라서 하상 경계면에서 발생하는 전단응력의 경우 수심의 20% 이하의 연직 유속분포를 벽법칙에 적용하여 추정하는 방법이 주로 이루어지고 있다. 벽법칙을 이용한 하상 경계면의 전단응력을 계산하는 경우 대수중복층의 유속 분포 $u/u^*=(1/{\kappa})ln(zu^*/{\nu})+B$에서 무차원상수 ${\kappa}$와 B의 적절한 추정이 요구되어 진다. 일반적으로 무차원상수 ${\kappa}$와 B는 수리학적으로 매끄러운 벽면에서 대략 ${\kappa}=0.4$, B=5.5로서 경험적으로 이용되고 있다. 본 연구에서는 직선수로 및 다양한 사행수로의 3차원 흐름장 모의를 수행하여 벽법칙의 대수 중복층을 따르는 주흐름 방향 유속의 연직분포를 비교하였다. 수치모의 소프트웨어로서 Linux 기반의 OpenFOAM이 사용되었으며 모델의 검증을 위해 Chang(1971)에 의해 수행 된 사행수로에서의 유속장 관측 결과와 비교하였고 수치모의 결과가 실험 관측치와 잘 일치하는 것으로 판단되었다. 수치모의에 적용 된 사행수로의 형상은 Hey(1976)에 의해 제안 된 사행하천의 지형학적 인자들 간에 관계를 이용하여 사행도 1.03에서 2.42까지 총 7개의 사행수로 지형을 생성하였다. 사행도의 변화에 따라 만곡부 정점에서 대수중복층 구간의 주흐름 방향 유속의 연직분포를 비교한 결과, 본 연구에서 생성 된 모든 사행수로에서 대수중복층 구간의 무차원 유속 $u^+$와 무차원 거리 $z^+$가 로그 분포를 따르는 것으로 나타났으나 경험적으로 사용되었던 무차원상수 B의 경우 사행도가 증가 할수록 대수적으로 감소하는 경향이 나타났다. 본 연구에서는 이러한 관계가 무차원 상수 B값에 미치는 영향을 반영하여 수리학적으로 매끄러운 벽면에서 적용이 가능한 수정된 대수중복층 식을 제시하고자 한다.

  • PDF

Experimental Study on Estimation of Roll Damping for Various Midship Sections (중앙 단면 형상에 따른 횡동요 감쇠 추정 실험 연구)

  • Park, Byeongwon;Jung, Dong Woo;Jung, Jaesag;Park, Inbo;Cho, Seok-Kyu;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.322-329
    • /
    • 2019
  • The magnitude of the roll motion of a floating structure depends on the roll damping acting on the body. In other words, the roll damping of a floating structure must be accurately obtained in order to precisely evaluate the roll motion. Various methods are used to evaluate the roll damping of a floating structure, such as the linear potential theory, computational fluid dynamics (CFD), and model tests. However, it is difficult to evaluate the roll motion of a floating structure with appendages such as a bilge keel and riser slot due to the limitation of ignoring the viscous effects in the linear potential theory. Among these methods, a model test based on a free decay test and harmonic excited roll motion (HERM) is known to be the most reliable method to estimate the roll damping of the floating structures. In this study, model tests using free decay and HERM techniques were performed in the Ocean Engineering Basin (OEB) of KRISO with various types of midship sections. The roll damping results were estimated based on post-processing methods using both techniques, and the roll damping results were compared.

Numerical Study on Flow Characteristics Around Curved Riser (굽은 형상을 가지는 라이저 주위 유동 특성에 관한 연구)

  • Jung, Jae-Hwan;Oh, Seunghoon;Nam, Bo-Woo;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • The flow around a curved riser exposed to the current in various directions was investigated at a Reynolds number of 100 using a numerical simulation. The present study found that the flow features of the curved riser were distinct from those of a straight riser as a result of its large radius of curvature. Namely, there were various wake patterns according to the flow's incident angle. As the incident angle increased from $0^{\circ}$ to $90^{\circ}$, a two-row street of vortices that developed along the centerline of the curved riser became more apparent. However, when the incident angle approached $180^{\circ}$ from $90^{\circ}$, these vortices were completely suppressed by the interaction between the wake and an axial flow induced by the curvature of the riser. To identify this feature, the sectional force coefficients were also considered, and it was found that the force coefficients could be different from those found in a sectional analysis based on the strip theory when investigating vortex-induced vibration. As a result, this kind of study would be important to realistically estimate the riser VIV (vortex-induced vibration) and fatigue life, and a new force coefficient database that includes the three-dimensional effect should be established.

A Study on the Breakage of the Hatch Spring of the Submarine Escape Trunk through Microstructure Analysis (미세조직 분석을 통한 잠수함 탈출트렁크 해치 스프링 파손에 관한 연구)

  • Lee, Young-Suk;Choi, Woo-Suk;Kim, Byeong-Ho;Yun, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.305-312
    • /
    • 2021
  • This study examines the damage to the submarine's escape trunk hatch spring through microstructure analysis. The cause of the escape trunk's damage during the submarine's construction and its improvement measures were reviewed. To determine the cause of breakage of the escape trunk spring, samples were taken from the damaged product and analyzed for chemical composition, hardness, and microstructure. In particular, the breakage part of the spring was analyzed in-depth by using a scanning electron microscope to determine the cause of corrosion destruction. Finally, a spring shape design method was proposed through the investigation of the cause of spring breakage. In addition, a newly improved spring was produced by applying a nylon coating with excellent corrosion resistance and abrasion resistance. Applying to an actual submarine trunk hatch revealed that the coating peeling phenomenon due to the contact between the springs is significantly improved when the hatch is opened or closed compared to the existing products.