• Title/Summary/Keyword: 원통형 적층 쉘

Search Result 14, Processing Time 0.026 seconds

Analysis of Simple Supported Anisotropic Symmetric Laminated Cylindrical Shells (단순지지된 비등방성 대칭 적층 원통형 쉘의 해석)

  • Chai, Sang Youn;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.117-129
    • /
    • 1999
  • The objective of this study is to identify the advantages of composite materials and to investigate the behavior of the anisotropic symmetric laminated cylindrical shell structures. To analyze the anisotropic symmetric laminated cylindrical shell structures, the finite difference technique. that consists of forward, central and backward difference, is introduced. In this study, the degree of freedom consists of three displacements and, especially, two moments except twisting moment. It has the advantage of improving the accuracy for calculating the moments. All four edges are assumed to be simply supported. From the numerical results, it is proved that the finite difference technique can be used efficiently to analyze the anisotropic symmetric laminated cylindrical shells and gives a guide in deciding how to make use of the fiber angle the anisotropic symmetric laminated cylindrical shells.

  • PDF

Failure Analysis of RC Cylindrical Structures using Layered Shell Element with a Pressure Node (압력절점을 갖는 적층쉘 요소에 의한 콘크리트 원통형 구조물의 파괴해석)

  • 송하원;방정용;변근주;최강룡
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.475-484
    • /
    • 1999
  • 압력절점은 요소의 균등한 압력증분을 1개의 자유도로 갖는 절점이며, 유한요소의 하중-변위 평형방정식에 체적과 압력의 관계를 추가하여 한계압력 이후에서도 체적변화에 따른 압력증분을 직접적으로 제저할 수 있는 절점이다. 본 연구에서는 철근콘크리트의 평면 구성 방정식과 적층정식화에 적용한 쉘 요소에 압력절점을 추가하고 해석시 체적을 제어함으로써 철근콘크리트 원통형 구조에 대해 파괴까지의 극한내압 능력을 해석할 수 있는 체적제어 비선형 해석기법을 개발하였다. 본 논문에서 제안한 해석기법을 이용하여 철근콘크리트 원통형 구조물에 대하여 비선형 해석을 수행하여 한계압력과 한계압력 이후의 구조물의 거동을 예측하였으며 실험결과와 비교 검증하였다.

  • PDF

Natural vibrations of laminated anisotropic shells of revolution (적층 이방성 회전체 쉘의 고유진동 해석)

  • 전종균
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.135-141
    • /
    • 1995
  • Any arbitrarily shaped laminated composite shells of revolution can be sum of the conical shell elements. Therefore, finite element model of conical shell element will be developed in this study. To verify consistency and validity of this model, natural vibrations of this model is compared with the analytical solution of cylindrical shell. Herein, an extensive parametric study is presented to assess the modeling capability of this model in class of laminated composite cylinders. It is seen that the proposed model provides highly accurate results with analytical solution. Once development of this conical shell element is done, any arbitrarily shaped composite shells of revolution can be easily analyzed.

  • PDF

A Study on Edge Reinforcement Effect of Cylindrical Shells with Composite Laminate (복합적층 원통형 쉘의 단부보강 효과 연구)

  • Son, Byung-Jik;Ji, Hyo-Seon;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, composite laminate cantilever type cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Two models by load conditions are considered. Load type A and B are loaded by point load at the free edge and line load respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced minimum 30% by appropriate edge-stiffeners.

Study on Buckling of Composite Laminated Cylindrical Shells with Transverse Rib (횡리브로 보강된 복합적층 원통형 쉘의 좌굴거동에 관한 연구)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.493-500
    • /
    • 2004
  • In this study, the effects of ring stiffeners for buckling of cylindrical shells with composite materials were analyzed. The finite element method was used: 3-D beam elements were used for stiffeners and flat shell elements were used for cylindrical shells and were improved by introducing a substitute shear strain. The ring stiffeners were of the transverse rib type. The buckling behaviors of the cylindrical shells were analyzed based on various parameters, such as locations and sizes of stiffeners, diameter/length ratios and boundary conditions of shells, and fiber-reinforced angles. Effective reinforcement was examined by understanding the exact behaviors for buckling. The results of the analysis may serve as references for designs and future investigations.

A Study on Behavior of Anisotrpic Circular Cylingdrical Shell including Large Deformation Effects (대변형 효과를 고려한 비등방성 원통형 쉘의 거동에 관한 연구)

  • Chun, Kyoung Sik;Son, Byung Jik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.489-497
    • /
    • 2002
  • Nonlinear behavior and large deformation cannot be analyzed using techniques based on linear theory. Nonetheless, they are emerging as gradually huge and complex structures. In addition, the optimum design of structure is necessary in the development of high-performance computation and numerical methods. as well as stricter design-criterion. Therefore, the structural problems in engineering that are limited to the linear region must be extended to the nonlinear region. Likewise, structural behavior must be accurately analyzed. In turn, this requires considering the expected problems beforehand. Only then can an efficient, economical, and optimized structure be designed. This paper presents the solution of the geometrical nonlinear problem of anisotropic cylindrical shell. The characteristics of the geometrical nonlinear behavior of anisotropic circular cylindrical shells may vary according to several causes. e.g., change of fibers, curvature in the circumferential direction, subtended angle, aspect, etc. Parametric studies were conducted to determine the effect of factors on the large deflection behavior of laminated shells, with interesting observations.

Buckling Analysis of Laminated Composite Cylindrical Shell under Combined Load State (복합하중상태에 있는 복합재료 원통형 쉘의 좌굴 거동)

  • Yeo, Kyoung-Su;Yang, Won-Ho;Cho, Myoung-Rae;Sung, Ki-Deug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.119-130
    • /
    • 1999
  • This paper deals buckling behavior of laminated composite cylindrical shells subjected to combination of axial compression and torison. Linear and nonlinear finite element analysis are carried out . the influence of load type, load ratio, fiber orientation angle, stacking sequence, and intial imperfect on buckling behavior is discussed.

  • PDF

Finite Element Analysis of Glass Fiber Reinforced Plastic Pipes Under Internal Pressure (내압을 받는 복합 적층 파이프(GFRP) 구조의 유한요소 해석)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.101-109
    • /
    • 1994
  • A degenerated cylindrical shell element for modeling glass fiber reinforced plastic pipes is developed and its performance for static structural analysis under internal uniform pressure is evaluated. The element is a nine node degenerated solid shell element with reduced integration technique, addition of nonconforming displacement modes, and assumed strain method to improve convergence of analysis. Several numerical examples are solved and compared with analytical solutions and other F.E.M programs, The results show that the increment of fiber orientation in the GFRP pipes with reference to the longitudinal axis cause less radial displacements and much stiffness in the pipes. This is reasonable since the internal pressure will primarily cause hoop stresses in the ring and 90-angle ply GFRP ring carry these efficiently in pure tension.

  • PDF

Aerothermoelastic Analysis of Cylindrical Piezolaminated Shells Based on Multi-field Layerwise Theory (다분야 층별 이론에 기초한 원통형 압전적층 쉘의 공력열탄성학적 해석)

  • Oh, Il-Kwon;Shin, Won-Ho;Lee, In
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.52-61
    • /
    • 2002
  • For the aerothermoelastic analysis of cylindrical piezolaminated shells, geometrically nonlinear finite elements based on the multi-field layerwise theory hale been developed. Applying a Han Krumhaar's supersonic piston theory, supersonic flutter analyses are performed for the cylindrical piezolaminted shells subject to thermal stresses and deformations. The possibility to increase flutter boundary and reduce thermoelastic deformations of piezolaminated panels is examined using piezoelectric actuations. Results show that active piezoelectric actuations can effectively increase the critical aerodynamic pressure by retarding the coalescence of flutter modes and compensating thermal stresses.