원통형 적층 쉘에 의한 공명산란에서의 배경음압

주 영 상*, 이 정 권+, 최 명 선** *한국원자력연구소 원자력구조건전성과제 +한국과학기술원 기계공학과 **영남대학교 물리학과

The acoustical background for resonance scattering by multilayered cylindrical shells

Young-Sang Joo^{*}, Jeong-Guon Ih⁺, and Myoung-Seon Choi^{**}
* Project of Nuclear Structural Integrity, Korea Atomic Energy Research Institute

⁺ Department of Mechanical Engineering, KAIST

**Department of Physics, YeungNam University

1. 서 론

음파의 공명 산란 이론(Resonance Scattering Theory: RST)에서 산란 음압은 두 가지 성분의 합으로 구성된 다. 하나는 입사파의 주파수의 변화에 따라 비교적 규 칙적으로 부드럽게 변하는 배경음압(background)이고 다른 하나는 산란체의 공명에 의하여 매우 불규직으로 변하는 공명 신호(resonances)이다. 산란 음압에서 미지 의 배경음압을 제거하므로써 산란체의 공명 신호들이 격리된다.[1] 배경음압은 산란체에 의한 반사 신호와 회절파(Franz wave)의 간섭 효과에 의하여 생성되며 공 명은 입사파의 주파수가 산란체의 고유 진동수와 같아 질 때 발생한다. 물 속의 금속 봉이나 구에 의한 음과 산란에서의 배경음압은 경계면에서 입자의 변위가 없 는 강체에 의한 산란 음압 ('강성 배경음압')으로 사용 되어 왔다. 산란채가 쉝인 경우, 쉘이 두꺼울 때에는 강성 배경음압이 여전히 잘 적용될 수 있지만 쉘이 아 주 얇은 경우에서의 배경음압은 경계면에서 음압이 없 는 공동에 의한 산란 음압과 거의 같은 '연성 배경음 압'을 사용할 수 있다. 쉘이 두껍지도 너무 얇지도 않 은 경우에는 이러한 양 극한의 강성 및 연성 배경음압 을 사용할 수가 없다. 쉘의 두께가 얇아짐에 따라 배경 음압은 낮은 주파수 영역에서는 연성 배경음압으로 높 은 주파수 영역에서는 강성 배경음압으로 천이하는 특 성을 가져야 한다.[2] 그 동안 천이 배경음압(transitional background)에 대한 여러 가지 모델들이 연구되어 발표 되었으나 이 모델들은 각각 적용 가능한 쉘의 형태, 물 성 및 두께와 입사파의 주파수 영역에 어떤 제한이 있 었다.[3.6] 이와 같은 제한을 갖지 않고 적용될 수 있 는 완전한 배경음압(exact background)은 공명 산란 이론 이 발표된 이후 지금까지 약 이십년 동안 발견되지 않 고 있었으며 원래부터 아무도 모르는 것("unknown a priori*)으로 설명하여 왔다.

최근 '고유 배경음압(*inherent* background)'이라고 명 명된 배경음압의 새로운 개념이 제안되었다.[7] 이 새 로운 배경음압은 구형 쉘과 원통형 쉘의 배경음압 계 수에 대한 이론적 수식이 유도되며 쉘의 물성과 입사 주파수에 제한 없이 적용될 뿐만 아니라 쉘의 공명을 완벽하게 분리한다.[7,8] 고유 배경음압의 개념은 여러 층으로 적충되어 있는 원통형 탄성 구조물에 적용함으 로써 적충 구조의 산란체에도 재한 없이 적용됨을 보 였다.[9] 본 논문에서는 다중 적충 원통형 쉘에 대한 고유 배경음압 계수의 일반식을 유도한다.

2. 산란 함수와 모달 액셀러런스

적충 탄성 헬의 고유 배경음압을 구하기 위해서는 Fig. 1의 직충 헬에서 횡파가 무시된 상사(analogous) 유체 헬의 산란 문제를 다루어야 한다. 입사 평면과 $(J_n(x))$ 는 원통형 산란체의 중심에서 반경 방향으로 발 산하는 파(outgoing wave; $H_n^{(1)}(x)$)와 중심으로 모여드는 파(incoming wave; $H_n^{(1)}(x)$)로 분리할 수 있다. 이러한 수렴파(convergent wave)와 발산파(divergent wave)의 개념 을 사용하면 원통형 적층 산란체의 산란 함수 (Scattering S-function)를 직접 구할 수 있게 하며 산란 과정을 물리적으로 쉽게 야해할 수 있다.

2.1. 유체 실린더

번저 원통형 적충 산란체 중에서 가장 기본이 되는 산란체로서 유책 속에 잠긴 다른 유체 실린더 (m=0 인 경우)를 고려한다. 외부 유채에서의 음압은 다음과 같 이 중심 수렴과와 외부 발산파의 합으로 표현된다:

$$p = \sum_{n=0}^{\infty} \varepsilon_n i^n [H_n^{(2)}(kr) + S_n^{(L)} H_n^{(1)}(kr)] \cos n\theta \,. \tag{1}$$

유체 실린더 내부에서의 음압은 Bessel 함수로만 표현 된다:

$$p_0 = \sum_{n=0}^{\infty} \varepsilon_n i^n [(W_n^{(l)})_0 J_n(k_0 r)] \cos n\theta \,. \tag{2}$$

식 (1)과 (2)를 음압과 변위 연속의 유체/유체 경계 조 건에 대입하면 유체 실린더의 2×2 산란 행렬은 다음 과 같다:

$$\begin{bmatrix} H_n^{(1)}(x) & -J_n(y_n) \\ x H_n^{(1)*}(x) & -\frac{\rho}{\rho_0} y_0 J_n^{-*}(y_0) \end{bmatrix} \begin{bmatrix} S_n^{(L)} \\ (W_n^{(L)})_0 \end{bmatrix} = \begin{cases} -H_n^{(2)*}(x) \\ -x H_n^{(2)*}(x) \end{cases}.$$
 (3)

_____ 실린더(j=0)에 의한 외부 유체에서의 산란 함수는

$$S_n^{(L)} = -\frac{xH_n^{(2)+}(x) - (F_n^{(L)})_0 H_n^{(3)}(x)}{xH_n^{(3)+}(x) - (F_n^{(L)})_0 H_n^{(1)}(x)}$$
(4)
유해 사리더에 위한 모단 액색신턴스는

이 되고, 유체 실린더에 의한 모탈 액셀러면으는

$$(F_n^{(L)})_0 = \frac{\rho}{\rho_0} y_0 \frac{J_n(y_0)}{J_n(y_0)}$$
(5)

이 된다. Bessel 합수는 Hankel 함수와 $J_n(x) = [H_n^{(1)}(x) + H_n^{(2)}(x)]/2$ 인 관계가 있다. 실린더 내 부에는 산란 경계가 없으므로 매질 1에서의 산란 함수 는 1이다. 즉, $(S_n^{(1)})_0 = 1$. 그러므로, 실린더의 모달 액 셀러런스는 다음 식과 같이 내부의 산란 함수가 내재

$$\begin{bmatrix} H_n^{(1)}(x) & -H_n^{(2)}(y_1) & -H_n^{(1)}(y_1) \\ xH_n^{(1)_1}(x) & -\frac{\rho}{\rho_1} y_1 H_n^{(2)_1}(y_1) & -\frac{\rho}{\rho_1} y_1 H_n^{(1)_1}(y_1) \\ 0 & H_n^{(2)}(x_1) & H_n^{(1)}(x_1) \\ 0 & x_1 H_n^{(2)_1}(x_1) & x_1 H_n^{(1)_1}(x_1) \end{bmatrix}$$

이중 적충 실린디의 산란 함수 $S_n^{(L)}$ 와 모달 액셀러런 스 ($F_n^{(L)}$)는 각각 다음 식과 같이 주어진다.

$$S_n^{(L)} = -\frac{x H_n^{(2)}(x) - (F_n^{(L)})_1 H_n^{(2)}(x)}{x H_n^{(1)}(x) - (F_n^{(L)})_1 H_n^{(1)}(x)},$$
 (9)

$$(F_n^{(L)})_1 = \frac{\rho}{\rho_1} y_1 \frac{H_n^{(1)}(y_1)(S_n^{-(L)})_1 + H_n^{(2)}(y_1)}{H^{(1)}(y_1)(S_n^{-(L)})_1 + H_n^{(2)}(y_1)}.$$
 (10)

중심 실린더에 의한 산란 함수 (S_n⁽¹⁾),는 중심 실린더 의 외면과 관련되므로 식 (4)의 x를 x₁로 바꾸면 얻어 진다. 또한 중심 실린더의 (F_n⁽¹⁾),은 빌도 ρ가 ρ₁으 로 대체 되는 것 외에는 식 (6)과 같다.

2.3. 다중 적층 유체 산란체

실린더와 이중 적층 실린더의 결과들로부터 다중 직충 유체 산란체의 산란 함수와 모달 액셀러런스를 구할 수 있다. 적층 유체 산란체의 산란 함수 $S_{\mu}^{(t)}$ 는 식 (4)와 같다. 임의의 j 번째 중의 액셀러런스 ($F_{\mu}^{(t)}$), 는 j 번째 층의 산란 함수로부터 결정된다. 한다고 할 수 있다.

$$(F_n^{(L)})_0 = \frac{\rho}{\rho_0} y_0 \frac{H_n^{(1)}(y_0)(S_n^{(L)})_0 + H_n^{(2)}(y_0)}{H_n^{(0)}(y_0)(S_n^{(L)})_0 + H_n^{(2)}(y_0)}.$$
 (6)

2.2. 이중 적층 유체 실린더

유체 속에 잠긴 이중 적충 실린더(m=1 인 경우)의 경우 외부 유체와 유체 실린더의 응압은 각각 식 (1). (2)와 같고 유채 헬에서의 압력은 다음과 같다.

p₁ = ∑^{*}ε_niⁿ[(T^(L)_n)₁H⁽²⁾_n(k₁r)+(U^(L)_n)₁H⁽¹⁾_n(k₁r)]cos mθ. (7) 이 식들을 경계 조건에 대입하면 다음과 같은 4×4 산 란 행렬을 얻을 수 있다.

$$\begin{bmatrix} 0\\ 0\\ -J_{n}(y_{0})\\ -\frac{\rho_{1}}{\rho_{0}}y_{0}J_{n}^{-1}(y_{0}) \end{bmatrix} \begin{bmatrix} S_{n}^{(L)}\\ (T_{n}^{(L)})_{1}\\ (U_{n}^{(L)})_{1}\\ (W_{n}^{(L)})_{0} \end{bmatrix} = \begin{bmatrix} -H_{n}^{(2)}(x)\\ -xH_{n}^{(2)*}(x)\\ 0\\ 0 \end{bmatrix}.$$
(8)

 $-(F_n^{(L)})_j = \frac{\rho_{j(1)}}{\rho_j} y_j \frac{H_n^{(1)}(y_j)(S_n^{(L)})_j + H_n^{(2)}(y_j)}{H_n^{(0)}(y_j)(S_n^{(L)})_j + H_n^{(2)}(y_j)}.$ (11)

j 번째 적중의 액셀러런스는 j 번째 적층 매질의 바깥 쪽 경계면과 관계되므로 무차원 주파수 y,로만 표현된 다. j 번째 적층에서의 산란함수 (S_n^(L)),는 j 번째 적층 매질의 안쪽 경계면의 (F_n^(L)), 애 의하여 결정된다.

$$(S_n^{(I)})_j = -\frac{x_j H_n^{(2)}(x_j) - (F_n^{(I)})_{j-1} H_n^{(2)}(x_j)}{x_j H_n^{(0)}(x_j) - (F_n^{(I)})_{j-1} H_n^{(0)}(x_j)}.$$
 (12)

산란함수 (S,^(M)),는 / 번째 적층 매질의 내부 경계면과 관련되므로 무차원 주과수 x,로만 표현된다.

적충 실린더의 매질 중아 계속 증가되면 산란함수 와 모달 액셀러런스는 위와 같은 형태로 계속 반복되 어 나타난다. 식 (12)를 식 (11)에 대입하면, 임의의 총 과 인집 중간의 모달 액셀러런스의 반복 순환식을 얻 을 수 있다.

$$(F_n^{(L)})_i = \frac{\rho_{j+1}}{\rho_j} y_j \frac{x_j [J_n^+(y_j) Y_n^+(x_j) - J_n^+(x_j) Y_n^+(y_j)] - (F_n^{(L)})_{j-1} [J_n^+(y_j) Y_n(x_j) - J_n(x_j) Y_n^+(y_j)]}{x_j [J_n(y_j) Y_n^+(x_j) - J_n^+(x_j) Y_n(y_j)] - (F_n^{(L)})_{j-1} [J_n(y_j) Y_n(x_j) - J_n(x_j) Y_n(y_j)]}$$
(13)

적층 유체 산란채의 모달 액셀러런스는 일반화된 이 순환식으로부터 얻어진다. 산란재의 중심 외곽 중 (j=1) 에서 시작하여 적층 시스템의 최외곽증(j-m)까지 반복 된다. 마자박 단게에서 ρ_{m+1} 이 $\rho 로 대체되어야 한다.$ 산란째 중심이 채워진 적층 실린더인 경우, 중심

실린더(j=0)는 내부 경제가 없어 산란이 일어나지 않

으므로 중심 실린더에서의 산란 함수는 (S_n^(L))₀=1 이 된다. 그러므로, 중심 실린더(j=0)의 (F^(L)_n)₀은 다음과 같다.

$$(F_n^{(L)})_0 = \frac{\rho_1}{\rho_0} y_0 \frac{J_n'(y_0)}{J_n(y_0)}.$$
 (14)

중심이 진공(즉, ρ₀ = 0)이 되면 속이 번 적충 塑이 된

다. 이 경우 $(F_n^{(L)})_0 \to \infty$ 이므로 산란 함수는 $(S_n^{(L)}(x_1))_1 = -H_n^{(2)}(x_1)/H_n^{(1)}(x_1) = S_n^{(5)}(x_1)$ 이 되어 중심에 접한 첫 번째 유체충(*j*=1)의 모달 액셀러런스는 다음과 같이 표현된다:

$$(F_n^{(L)})_1 = \frac{\rho_2}{\rho_1} y_1 \frac{J_n(x_1)Y_n'(y_1) - J_n'(y_1)Y_n(x_1)}{J_n(x_1)Y_n(y_1) - J_n(y_1)Y_n(x_1)}.$$
 (15)

만일 중심 실린더가 강채가 되면, $(F_n^{(L)})_0 = 0$ 이 되고 중심 실린더에 의한 산란 함수는 $(S_n^{(L)})_1 = -H_n^{(2)*}(x_1)/H_n^{(3)*}(x_1) = S_n^{(r)}$ 이 되어 이 경우의 가 장 안쪽 유체충(j=1)의 모달 액셀러런스는 다음과 같이 정의된다:

$$(F_n^{(L)})_l = \frac{\rho_2}{\rho_1} y_1 \frac{J_n'(x_1)Y_n'(y_1) - J_n'(y_1)Y_n'(x_1)}{J_n'(x_1)Y_n(y_1) - J_n(y_1)Y_n'(x_1)}.$$
 (16)

3. 배경음압 계수

적충 탄성 쉘의 모달 액샐러런스(F_n)_n은 두가지 성 분으로 이루어져 있다: 하나는 주파수와 무관한 상수 성분 즉, 배경음압이며 다른 하나는 공명 주파수 근처 에서 특이점을 갖는 공명이다.[7,8] 고유 배경음압은 적 충 탄성 쉘의 평파가 무시된 상사(analogous) 유체 적충 쉘의 모달 액셀러런스에 극소 주파수 근사를 취함으로 써 얻어지는 상수 성분 (F_n^(L)(0^{*}))_n에 의하여 결정된다.

3.1. 적층 쉘의 일반식

 F_n의 상수 성분 즉, 배경음압의 계수는

 x_j <<1, y_j <<1일 때의 Bessel 과 Neumann 함수의 극</td>

 소 주파수 근사식[8]을 식 (13)에 대입하고

 x_j = y_j(1-h_j)관계식을 이용하면 적충 쉘의

 (F^(L)_n(0^{*}))_j는 다음과 같이 유도 된다:

 n = 0 일 때

$$(F_0^{(L)}(0^+))_j = \frac{\rho_{j+1}}{\rho_j} \frac{(F_0^{(L)}(0^+))_{j-1}}{1 - \ln(1 - h_j)(F_0^{(L)}(0^+))_{j-1}}, \quad (17a)$$

n≥1일 때

$$(F_n^{(L)}(0^+))_j = \frac{\rho_{j+1}}{\rho_j} \frac{n^2 + q_j (F_n^{(L)}(0^+))_{j-1}}{q_j + (F_n^{(L)}(0^+))_{j-1}}.$$
 (17b)

$$[\alpha] [7] \lambda] \qquad q_j = n \frac{1 + (1 - h_j)^{2n}}{1 - (1 - h_j)^{2n}}.$$
 (17c)

적충 시스템에 대한 액셀러런스의 상수 성분 $(F_n^{(L)}(0^+))_m \in (F_n^{(L)}(0^+))_{j-1} \cong (F_n^{(L)}(0^+))_j$ 에 j=1 부터 j=m까지 반복해서 대입함으로써 얻어진다. 중심 실 린더(j=0)의 경계 조건에 따라서 가장 안쪽 충(j=0 또 는 j=1)의 $(F_n^{(L)}(0^+))_0 \in$ 각기 달리 결정되어야 한다.

적층 설린더의 경우의 ($F_s^{(L)}(0^*)$),는 식 (14)로부터 다음과 같이 구해진다:

$$(F_n^{*(L)}(0^*))_0 = \frac{\rho_1}{\rho_0} n^{-1}$$
(18)

속이 진공인 적충 쉘에 있어서 가장 안쪽 충의 $(F_{"}^{(L)}(0^{+}))_{l}$ 은 식 (15)로부터 다음과 같이 표현된다:

n=0일 때

$$(F_0^{(L)}(0^*))_{l} = -\frac{\rho_2}{\rho_l} \frac{1}{\ln(l-h_l)},$$
 (19a)

n≥1일 때

$$(F_n^{(L)}(0^*))_l = \frac{\rho_2}{\rho_l} n \frac{1 + (1 - h_l)^{2n}}{1 - (1 - h_l)^{2n}}.$$
 (19b)

중심이 강채인 적충 산란채의 (F_n^(L)(0^{*}))₁은 식 (16)으로부터 다음과 같이 유도된다:

$$(F_n^{(L)}(0^+))_1 = \frac{\rho_2}{\rho_1} n \frac{1 - (1 - h_1)^{2n}}{1 + (1 - h_1)^{2n}}$$
(20)

3.2. 실린더

실린더 (즉, m=0인 경우)에 대한 액셀러런스의 상 수 성분은 (18)의 ρ_1 을 ρ 로 대체하여 얻어진다:

$$(F_n^{(L)}(0^+))_0 = \frac{\rho}{\rho_0} n \cdot$$
(21)

실린더의 밀도가 매우 작은 경우 액셀러런스 상수는 매우 키지고 반대로 신린더가 강채와 같이 밀도가 매 우 크면 액셀러런스 상수는 0 애 가까워 진다. 이는 식 (4)에서와 같이 $(F_n^{(L)}(0^*))_0 \to \infty$ 이 되면 고유 배경 계수 는 연성 배경음압 계수로 $(F_n^{(L)}(0^*))_0 \to 0$ 이 되면 고유 배경 계수는 강성 배경음압 계수로 된다.

3.3. 속이 빈 쉛

속이 빈 탄성 쉘의 고유 배경음압에 대응되는 모달 액셀러런스는 다음과 같다:

$$n = 0 \stackrel{\text{op}}{=} \stackrel{\text{m}}{=} (F_0^{(L)}(0^+))_1 = -\frac{\rho}{\rho_1} \frac{1}{\ln(1-h_1)}, \qquad (22a)$$

$$n \ge 1$$
 알 때 $(F_n^{(L)}(0^+))_1 = \frac{\rho}{\rho_1} n \frac{1 + (1 - h_1)^{2n}}{1 - (1 - h_1)^{2n}}.$ (22b)

속이 빈 쉘의 n=0 부분파의 배경음압은 0 이 아니다. 속이 빈 쉘의 고유 배경음압은 밀도비, 쉘의 상대 두 꼐 그리고 정규 모우드 차수와 관계된다. 상대 두께가 1 에 가까워지면 속이 빈 쉘의 고유 배경음압 계수는 실린더의 고유 배경음압 계수로 수립한다. 즉, ħ→1 이면 (F₆^(L)(0⁺)),→0이 되고 (F₂^(L)(0⁺)),→(ρ/ρ)n이 된다.

3.4. 속이 유체로 채워진 쉘

유체가 채워진 탄성 쉘의 경우의 고유 배경음압에 대용하는 모달 액셀러런스는 다음과 같다:

$$= (F_n^{(L)}(0^+))_1 = \frac{\rho}{\rho_1} \frac{n^2 + q_1(F_n^{(L)}(0^+))_0}{q_1 + (F_n^{(L)}(0^+))_0}$$
(23a)

여기서

$$q_1 = n \frac{1 + (1 - h_1)^{2n}}{1 - (1 - h_1)^{2n}}, \quad (F_n^{(L)}(0^*))_0 = \frac{\rho_0}{\rho_0} n.$$
(23b)

유체가 채워진 탄성 쉘의 액샐러런스 상수 (F₀^(L)(0⁺)),는 내부 유체의 액샐러런스 상수 (F₀^(L)(0⁺)), 여 영향을 받으며 말도비와 모우드 차수에 의해 결정된다. 내부 유체가 진공이 되면 즉. (F₀^(L)(0⁺))₀→∞ 가 되고 (F₀^(L)(0⁺))₀→(ρ/ρ₁)q₁ 이 되 어 식 (23)은 속이 빈 쉘의 고유 배경음압 개수로 접근 한다. 유체가 채워진 쉘의 경우에는 고유 배경음압 계 수는 산란체 전체의 모달 질량과 관계되므로 내부 유 채의 밀도가 반드시 배경음압에 포함되어 표현되어야 한다.

3.5. 속이 빈 피복 쉘

속어 빈 이중 적충 탄성 쉘의 모달 액셀러런스 상 수값은 다음과 같다: n=0일 때

$$(F_0^{(L)}(0^*))_2 = \frac{\rho}{\rho_2} \frac{(F_0^{(L)}(0^*))_1}{[1 - \ln(1 - h_2)(F_0^{(L)}(0^*))_1]}, \quad (24a)$$

n≥Ⅰ일 때

$$(F_n^{(L)}(0^*))_2 = \frac{\rho}{\rho_2} \frac{n^2 + q_2(F_n^{(L)}(0^*))_1}{q_2 + (F_n^{(L)}(0^*))_1}, \qquad (24b)$$

여기서

$$(F_0^{(L)}(0^+))_1 = -\frac{\rho_2}{\rho_1} \frac{1}{\ln(1-h_1)} + (F_n^{(L)}(0^+))_1 = \frac{\rho_2}{\rho_1} q_1 + (24c)$$

이중으로 적충된 원통형 쉘의 고유 배경음압 계수는 외부 쉘과 바깥 유체의 밀도비(ρ/ρ_2), 내부와 외부 쉘 의 밀도비(ρ_2/ρ_1), 내부와 외부 쉘의 상대 두깨(h_1, h_2) 그리고 정규 모우드 차수(n)에 의하여 결정된다. 만일 밀도비와 상대 두께 비가 각 극한으로 접근하게 되면 고유 배경음압 계수는 보다 단순한 형태의 계수로 접 근하게 된다. 이는 이중 충의 원통령 쉘의 고유 배경음 압 계수가 고채(또는 유체) 실란더, 내부가 진공이고 단일 층으로 이루어진 원통형 쉘, 그리고 내부가 액체 로 채워진 원통형 쉘 등의 배경음압 계수를 모두 포함 하는 일반화된 형태로 되어 있다. 이러한 근사 특성은 고유 배경음압을 얻는 물리적 개념이 이론적으로 산란 체의 형상과 그 구성 상태에 제한이 없이 완전함을 보 이는 것이다.

4. 결론

음파의 공명 산란에 있어서 공명은 배경음압으로부 터 격리된다. 배경음압은 탄성 쉘의 모달 액셀러런스에 주파수와 무관한 상수 성분으로 고유하게 존재한다. 적 충 탄성 쉘의 고유 배경음압은 상사 유체 적충 쉘의 모달 액셀러런스로부터 수식화 된다. 유체 적충 쉘의 임의 적충의 액셀러런스는 인접 유체충의 액셀러런스 와 반복 순환되어 표현된다. 이 반복 순환식에 극소 주 파수 근사를 취함으로써 적충 탄성 쉘의 고유 배경음 입 계수의 일반식을 유도할 수 있다. 적층 탄성 쉘의 고유 배경음압 계수는 적층재의 두께 및 밀도의 극한 에 따라 한 단계 단순한 쉘의 배경음업개수로 근사한 다. 이는 고유 배경음압을 구하는 일련의 이론적 과정 이 산란체의 형상과 물성 그리고 구성 상태에 제한이 없으며 고유 배경음안을 얻는 물리적 개념이 완전함을 증명하는 것이다. 적충 쉘에 대한 음파의 공명 산란 현 상을 명확하게 해석할 수 있는 강력한 도구를 개발하 였다.

참고문헌

- L. Flax, L.R. Dragonette, and H. Überall, "Theory of elastic resonance excitation by sound scattering", J. Acoust. Soc. Am. 63, 723-731 (1978).
- [2] M. F. Werby and G. C. Gaunaurd, "Transition from soft to rigid behavior in scattering from submerged thin elastic shells," Acoust. Lett. 9, 89-93 (1986).
- [3] J. D. Murphy, E. D. Breitenbach, and H. Überall, "Resonance scattering of acoustic waves from cylindrical shells," J. Acoust. Soc. Am. 64, 677-683 (1978).
- [4] N. D. Veksler, "Intermediate background in problems of sound waves scattering by elastic shells," Acustica 76, 1-9 (1992).
- [5] M. F. Werby, "The acoustical background for a submerged elastic shell," J. Acoust. Soc. Am. 90, 3279-3287 (1991).
- [6] C. Gaunaurd, "Hybrid background coefficients to isolate the resonance spectrogram of submerged shells," J. Acoust. Soc. Am. 92, 1981-1984 (1992).
- [7] M.-S. Choi and Y.-S. Joo, "Theory of the background amplitudes in acoustic resonance scattering," J. Acoust. Soc. Am. 101, 2083-2087 (1997)
- [8] M.-S. Choi, Y.-S. Joo, and J.-P. Lee, "Inherent background coefficients for submerged cylindrical shells," J. Acoust. Soc. Am., 101, 1743-1745 (1997).
- [9] Y.-S. Joo, J.-G. Ih, and M.-S. Choi, "Inherent background coefficients for acoustic resonance scattering from submerged, multilayered, cylindrical structures," J. Acoust. Soc. Am., 102, 900-910 (1998).

Fig. 1. Plane wave scattering from a multilayered cylindrical liquid shell.