• Title/Summary/Keyword: 원격 사용성 평가

Search Result 261, Processing Time 0.028 seconds

Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 광학 위성영상을 이용한 중소규모 저수지 수체 변화 분석)

  • Younghyun Cho;Joonwoo Noh
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.

Image-based Water Level Measurement Method Adapting to Ruler's Surface Condition (목자판 표면 상태에 적응적인 영상 기반 수위 계측 기법)

  • Kim, Jae-Do;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.67-76
    • /
    • 2010
  • This paper proposes a image-based water level measurement method, which adapt to the ruler's surface condition. When the surface of a ruler is deteriorated by mud, drifts, or strong light reflection, the proposed method judges the pollution of ruler by comparing distance between two levels: the first one is the end position of horizontal edge region which keeps the pattern of ruler's marking, and the second one is the position where the sharpest drop occurs in the histogram which is construct using image density based on the axis of image height. If the ruler is polluted, the water level is a position of local valley of the section having a maximum difference between the local peak and valley around the second level. If the ruler is not polluted, the water level is detected as the position having horizontal edges more than 30% of histogram's maximum value around the first level. The detected water level is converted to the actual water level by using the mapping table which is construct based on the making of ruler in the image. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the real situation.

A Study on the Effect of User Value on Smartwatch Digital HealthcareAcceptance Intention to Promote Digital Healthcare Venture Start Up (Digital Healthcare 벤처창업 촉진을 위한, 사용자 가치가 Smartwatch Digital Healthcare 수용의도에 미치는 영향 연구)

  • Eekseong Jin;soyoung Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.35-52
    • /
    • 2023
  • Recently, as the non-face-to-face environment has developed due to COVID-19 and environmental pollution, the importance of online digital healthcare is increasing, and venture start-ups and activities such as health care, telemedicine, and digital treatments are also actively underway. This study conducted the impact on the acceptability of digital healthcare smartwatches with an integrated approach of the expanded integrated technology acceptance model (UTAUT2) and the behavioral inference model (BRT). The most advanced integrated technology acceptance model for innovative technology acceptance research was used to identify major factors such as utility expectations, social effects, convenience, price barriers, lack of alternatives, and behavioral intentions. For the study, about 410 responses from ordinary people in their teens to 60s across the country were collected, and based on this, the hypothesis was verified using structural equations after testing reliability and validity of the data. SPSS 23 and AMOS 23 were used for research analysis. Studies have shown that personal innovation has a significant impact on the reasons for acceptance (use value, social impact, convenience of use), attitude, and non-use (price barriers, lack of alternatives, and barriers to use). These results are the same as the results of previous studies that confirmed the influence of the main value of innovative ICT on user acceptance intention. In addition, the reason for acceptance had a significant effect on attitude, but the effect of the reason for non-acceptance was not significant. It can be analyzed that consumers are interested in new ICT products and new services, but purchase them more carefully and selectively. This study has evolved from the acceptance analysis of general-purpose consumer innovation technology to the acceptance analysis of consumer value in smartwatch digital healthcare, which is a new and important area in the future. Industrially, it can contribute to the product's purchase and marketing. It is hoped that this study will contribute to increasing research in the digital healthcare sector, which will play an important role in our lives in the future, and that it will develop into in-depth factors that are more suitable for consumer value through integrated approach models and integrated analysis of consumer acceptance and non-acceptance.

  • PDF

Release Characteristics of Fission Gases with Spent Fuel Burn-up during the Voloxidation and OREOX Processes (사용후핵연료의 연소도 변화에 따른 산화 및 OREOX 공정에서 핵분열기체 방출 특성)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.39-52
    • /
    • 2007
  • Quantitative analysis on release behavior of the $^{85}Kr\;and\;^{14}C$ fission gases from the spent fuel material during the voloxidation and OREOX process has been performed. This thermal treatment step in a remote fabrication process to fabricate the dry-processed fuel from spent fuel has been used to obtain a fine powder The fractional release percent of fission gases from spent fuel materials with burn-up ranges from 27,000 MWd/tU to 65,000 MWd/tU have been evaluated by comparing the measured data with these initial inventories calculated by ORIGEN code. The release characteristics of $^{85}Kr\;and\;^{14}C$ fission gases during the voloxidation process at $500^{\circ}C$ seem to be closely linked to the degree of conversion efficiency of $UO_2\;to\;U_3O_8$ powder, and it is thus interpreted that the release from grain-boundary would be dominated during this step. The high release fraction of the fission gas from an oxidized powder during the OREOX process would be due to increase both in the gas diffusion at a temperature of $500^{\circ}C$ in a reduction step and in U atom mobility by the reduction. Therefore, it is believed that the fission gases release inventories in the OREOX step come from the inter-grain and inter-grain on $UO_2$ matrix. It is shown that the release fraction of $^{85}Kr\;and\;^{14}C$ fission gases during the voloxidation step would be increased as fuel burn-up increases, ranging from 6 to 12%, and a residual fission gas would completely be removed during the OREOX step. It seems that more effective treatment conditions for a removal of volatile fission gas are of powder formation by the oxidation in advance than the reduction of spent fuel at the higher temperature.

  • PDF

Unveiling the Potential: Exploring NIRv Peak as an Accurate Estimator of Crop Yield at the County Level (군·시도 수준에서의 작물 수확량 추정: 옥수수와 콩에 대한 근적외선 반사율 지수(NIRv) 최댓값의 잠재력 해석)

  • Daewon Kim;Ryoungseob Kwon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.182-196
    • /
    • 2023
  • Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly using vegetation indices (VIs), have show n promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation w as slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.

Comparison of Reflectance and Vegetation Index Changes by Type of UAV-Mounted Multi-Spectral Sensors (무인비행체 탑재 다중분광 센서별 반사율 및 식생지수 변화 비교)

  • Lee, Kyung-do;Ahn, Ho-yong;Ryu, Jae-hyun;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.947-958
    • /
    • 2021
  • This study was conducted to provide basic data for crop monitoring by comparing and analyzing changes in reflectance and vegetation index by sensor of multi-spectral sensors mounted on unmanned aerial vehicles. For four types of unmanned aerial vehicle-mounted multispectral sensors, such as RedEdge-MX, S110 NIR, Sequioa, and P4M, on September 14 and September 15, 2020, aerial images were taken, once in the morning and in the afternoon, a total of 4 times, and reflectance and vegetation index were calculated and compared. In the case of reflectance, the time-series coefficient of variation of all sensors showed an average value of about 10% or more, indicating that there is a limit to its use. The coefficient of variation of the vegetation index by sensor for the crop test group showed an average value of 1.2 to 3.6% in the crop experimental sites with high vitality due to thick vegetation, showing variability within 5%. However, this was a higher value than the coefficient of variation on a clear day, and it is estimated that the weather conditions such as clouds were different in the morning and afternoon during the experiment period. It is thought that it is necessary to establish and implement a UAV flight plan. As a result of comparing the NDVI between the multi-spectral sensors of the unmanned aerial vehicle, in this experiment, it is thought that the RedEdeg-MX sensor can be used together without special correction of the NDVI value even if several sensors of the same type are used in a stable light environment. RedEdge-MX, P4M, and Sequioa sensors showed a linear relationship with each other, but supplementary experiments are needed to evaluate joint utilization through off-set correction between vegetation indices.

A Study of Tasseled Cap Transformation Coefficient for the Geostationary Ocean Color Imager (GOCI) (정지궤도 천리안위성 해양관측센서 GOCI의 Tasseled Cap 변환계수 산출연구)

  • Shin, Ji-Sun;Park, Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.275-292
    • /
    • 2014
  • The objective of this study is to determine Tasseled Cap Transformation (TCT) coefficients for the Geostationary Ocean Color Imager (GOCI). TCT is traditional method of analyzing the characteristics of the land area from multi spectral sensor data. TCT coefficients for a new sensor must be estimated individually because of different sensor characteristics of each sensor. Although the primary objective of the GOCI is for ocean color study, one half of the scene covers land area with typical land observing channels in Visible-Near InfraRed (VNIR). The GOCI has a unique capability to acquire eight scenes per day. This advantage of high temporal resolution can be utilized for detecting daily variation of land surface. The GOCI TCT offers a great potential for application in near-real time analysis and interpretation of land cover characteristics. TCT generally represents information of "Brightness", "Greenness" and "Wetness". However, in the case of the GOCI is not able to provide "Wetness" due to lack of ShortWave InfraRed (SWIR) band. To maximize the utilization of high temporal resolution, "Wetness" should be provided. In order to obtain "Wetness", the linear regression method was used to align the GOCI Principal Component Analysis (PCA) space with the MODIS TCT space. The GOCI TCT coefficients obtained by this method have different values according to observation time due to the characteristics of geostationary earth orbit. To examine these differences, the correlation between the GOCI TCT and the MODIS TCT were compared. As a result, while the GOCI TCT coefficients of "Brightness" and "Greenness" were selected at 4h, the GOCI TCT coefficient of "Wetness" was selected at 2h. To assess the adequacy of the resulting GOCI TCT coefficients, the GOCI TCT data were compared to the MODIS TCT image and several land parameters. The land cover classification of the GOCI TCT image was expressed more precisely than the MODIS TCT image. The distribution of land cover classification of the GOCI TCT space showed meaningful results. Also, "Brightness", "Greenness", and "Wetness" of the GOCI TCT data showed a relatively high correlation with Albedo ($R^2$ = 0.75), Normalized Difference Vegetation Index (NDVI) ($R^2$ = 0.97), and Normalized Difference Moisture Index (NDMI) ($R^2$ = 0.77), respectively. These results indicate the suitability of the GOCI TCT coefficients.

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

An Interactive Approach to Categorize Questions on the Internet BBSs (인터넷 게시판 질문 분류를 위한 인터랙티브 접근방법에 관한 연구)

  • Jae-Kwang Lee;Seong-Ho Noh;Ok-Hyun Ryou
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.3
    • /
    • pp.177-195
    • /
    • 2003
  • In a traditional customer support environment, mainly call centers or service centers are responsible for receiving inquiries from their customers via telephone calls. Due to the rapid growth of Internet with its widespread acceptance and accessibility, means of communication with customers in the traditional customer support center, such as telephones, letters, and direct-visiting, have been replaced by e-mails and bulletin board systems (BBSs) using the Internet constantly. BBSs are basically question and answer systems, they require some lead time to get answer from administrator. To reduce lead time, BBSs enable remote customers or users to log on and tap into a knowledge database that is generally formatted in the form of Frequently Asked Questions (FAQs) that provide answers and solutions to the common problems. And, many different types of the questions are mixed on the BBS. It is a burden to administrator. To build FAQs and to support BBS adminstrator, a supporting tool which is to categorize questions is helpful. In this research, we suggest an interactive question categorizing methodology which consists of steps to present question using keywords, identifying keywords' affinity, computing similarity among questions, and clustering questions. This methodology allows users to interact iteratively for clear manifestation of ambiguous questions. We also developed a prototype system, IQC (interactive question categorizer) and evaluated its performance using the comparison experiments with other systems. IQC is not a general purposed system, but it produces a good result in a given specific domain.

  • PDF

The Establishment and Application of Very Short Range Forecast of Precipitation System (초단시간 강수예보시스템 구축 및 활용)

  • Choi, Ji-Hye;Nam, Kyung-Yeub;Suk, Mi-Kyung;Choi, Byoung-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1515-1519
    • /
    • 2006
  • 본 연구에서는 초단시간 강수예보(VSRF, Very Short-Range Forecast of precipitation) 시스템 구축 현황을 소개하고자 한다. VSRF 모델은 레이더 반사도 자료와 지상 AWS 자료를 이용하여 레이더-AWS 강우강도를 산출하는 강수분석과정과 분석된 강수량 자료와 중규모 수치예보장을 사용하여 외삽법에 의한 초단시간 강수예보를 수행하는 예보과정, 실시간으로 산출된 강수예보 자료를 검증하고 홈페이지에 제공하는 자료지원과정으로 구성된다. 본 연구에서는 모델의 예보능력을 향상시키기 위해 크게 두 가지 측면에서 모델을 개선하였다. 첫째는 모델의 입력자료인 레이더-AWS 강우강도 자료를 기상연구소 원격탐사연구실에서 운영하던 WPMM (Window Probability Matching Method)과 기상청 기상레이더과에서 운영하던 RQPE(Radar Quantitative Precipitation Estimation)의 알고리즘을 통합하여 정확한 강우강도 자료인 레이더-AWS 강우강도(RAR, Radar-AWS Rain rate) 시스템을 구축하여 개선하였으며, 둘째는 외삽과정을 통한 예보가 3시간이 지나면 예측능력이 감소하는 문제점을 보완하기 위해 현업 중규모 모델(RDAPS, Regional Data Assimilation and Prediction System)의 예측강수와 병합하여 모델을 개선하였다. 또한 이를 시계열 검증 및 공간 검증하는 실시간 검증 시스템을 구축하여 실시간으로 모델의 정확성을 평가하고 있다. 그 결과 입력자료 개선을 통한 모델의 정확도는 크게 향상된 결과는 볼 수 없었지만 미약하게 향상된 것을 확인할 수 있었으며, 모델의 병합을 통한 모델의 개선은 예측 3시간 이후부터는 50% 정도 향상되었다.의 대안을 제시하고자 한다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에

  • PDF