• Title/Summary/Keyword: 움직임 보상 보간

Search Result 61, Processing Time 0.04 seconds

Reliability Evaluation Method Based on Spatio-Temporal Statistical Characteristics for Motion Compensated Interpolated Frame (움직임 보상 보간 프레임에 대한 시공간적 통계특성에 기초한 블록기반의 신뢰도 평가 방법)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.28-36
    • /
    • 2013
  • Motion-compensated frame interpolation (MCFI) techniques in video signal processing have many application areas. Frame rate up-conversion (FRUC) or distributed video coding (DVC) technique needs an effective MCFI algorithm. For these applications, it is necessary to develop an effective post-processing technique to improve visual qualities or to reduce virtual channel noises, resulting in the reduced channel bit rate. This paper proposes a reliability evaluation method based on spatio-temporal characteristics for motion-compensated interpolated blocks. The proposed algorithm investigates the temporal matching characteristics for current frame and then is designed in such a way that it can measure temporal characteristics as well as the spatial ones. Through computer simulations, it is shown that the proposed method outperforms the conventional temporal matching method.

Frame-Adaptive Distortion Estimation for Motion Compensated Interpolated Frame (움직임 보상 보간 프레임에 대한 프레임 적응적 왜곡 예측 기법)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • Video FRUC (Frame Rate Up Conversion) has been a technique of great interest due to its diversified applications in consumer electronics. Most advanced FRUC algorithms adopt a motion interpolation technique to determine the motion vector field of interpolated frames. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame is reconstructed. For this aim, this paper proposes a distortion estimation for motion compensated interpolation frame using frame-adaptive distortion estimation. The proposed method is applied for the symmetric motion estimation and compensated scheme and then analyzed by three different approaches, that is, forward estimation, backward estimation and adaptive bi-directional estimation schemes. Through computer simulations, it is shown that the proposed bi-directional estimation method outperforms others and can be effectively applied for FRUC.

Efficient Motion Compensated Interpolation Technique Using Image Resizing (영상의 크기 변환을 이용한 효율적인 움직임 보상 보간 기법)

  • Kwon, Hye-Gyung;Lee, Chang-Woo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.599-608
    • /
    • 2013
  • Motion compensated interpolation (MCI) techniques are used for increasing the frame rate and generating the side information in the distributed video coding (DVC) system. In this paper, an efficient MCI technique using the image resizing in the DCT or LiftLT domain is proposed, and the performance of the MCI technique using various sub-pixel generation techniques is analyzed. Extensive computer simulations show that the proposed method produces the superior results compared to the conventional methods.

Distortion Estimation Using Block-Adaptive Matching Characteristics for Motion Compensated Interpolation Frame (움직임 보상 보간 프레임에 대한 블록 적응적 정합 특성을 이용한 왜곡 예측 기법)

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1058-1068
    • /
    • 2011
  • Video FRUC (Frame Rate Up Conversion) is one of the main issues that have arisen in recent years with the explosive growth of video sources and display formats in consumer electronics. Most advanced FRUC algorithms adopt an efficient motion interpolation technique to determine the motion vector field of interpolated frames. But, in some application areas such as post processing in receiver side, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame was reconstructed. In order to achieve this aim, first, this paper introduces some cost functions to estimate the reliability of a block in the MCI frame. Then, by using these functions, this paper proposes two distortion estimation models for evaluating how much noise was produced in the MCI frame. Through computer simulations, it is shown that the proposed estimation methods perform effectively in estimating the noises of the MCI frame.

Efficient Motion Vector Correction Method m Motion Compensated Interpolation Technique Using Bilateral Motion Estimation (쌍방향 움직임 예측을 이용한 움직임 보상 보간 기법에서 효율적인 움직임 벡터 보정 방법)

  • Park, Ji-Yoon;Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7C
    • /
    • pp.687-696
    • /
    • 2009
  • The motion compensated interpolation method is widely used to increase video frame rates. Especially, the bilateral motion estimation technique provides the improved results, since it doesn't make the overlapping and missing blocks in the interpolated frame. However, the motion vectors, which are obtained by the bilateral motion estimation, sometimes require further correction. In this paper, we propose the efficient motion vector.correction method for the bilateral motion estimation technique. By comparing the motion vectors of neighboring blocks and searching the new motion vector after merging the neighboring blocks, the erroneous motion vectors are efficiently corrected. It is shown that the proposed method provides better results, compared with the conventional methods.

A Study on Motion Compensation for H.264/AVC Decoder (H.264/AVC 디코더용 움직임 보상 연구)

  • Song, Hyeong-Don;Sonh, Seung-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.723-726
    • /
    • 2008
  • H.264/AVC는 다양한 블록 사이즈에 따라 움직임 보상을 수행한다. 본 논문은 1/4정밀도 화소를 지원하는 효율적인 움직임 보상에 대해 연구하였다. 참조 프레임의 데이터로 사용하기 위한 메모리의 접근을 줄이고 2개의 6-tap 필터를 사용하는 움직임 보상을 제안한다. 소프트웨어 검증을 통한 최적화 된 알고리즘을 사용하여 하드웨어 설계 언어를 이용하여 기술하고 ModeSim 6.0a를 이용한 데이터 검증을 수행하였다.

  • PDF

Frame Rate Up Conversion Method using Partition Block OBMC and Improved Adaptively Weighted Vector Median (분할 블록 OBMC와 개선된 적응 가중 중간값 필터를 이용한 프레임률 증가 기법)

  • Kim, Geun-Tae;Ko, Yun-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This paper proposes a new motion vector smoothing and motion compensation method to increase the frame rate of videos. The proposed method reduces false motion vector smoothing by improving the weight with reflecting accuracy to overcome the limitation of the conventional motion vector smoothing using the adaptively weighted vector median. Also, to improve the interpolated image quality of the conventional OBMC(Overlapped Block Motion Compensation), a scheme that divides an original block into 4 sub-blocks and then generates the interpolated frame using the reestimated motion vector for each sub-block is proposed. The simulation results prove that the proposed method can provide much better objective and subjective image quality than the conventional method.

Frame-rate Up-conversion using Hierarchical Adaptive Search and Bi-directional Motion Estimation (계층적 적응적 탐색과 양방향 움직임 예측을 이용한 프레임율 증가 방법)

  • Min, Kyung-Yeon;Park, Sea-Nae;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.28-36
    • /
    • 2009
  • In this paper, we propose a frame-rate up-conversion method for temporal quality enhancement. The proposed method adaptively changes search range during hierarchical motion estimation and reconstructs hole regions using the proposed bi-direction prediction and linear interpolation. In order to alleviate errors due to inaccurate motion vector estimation, search range is adaptively changed based on reliability and for more accurate, motion estimation is performed in descending order of block variance. After segmentation of background and object regions, for filling hole regions, the pixel values of background regions are reconstructed using linear interpolation and those of object regions are compensated based on the proposed hi-directional prediction. The proposed algorithm is evaluated in terms of PSNR with original uncompressed sequences. Experimental results show that the proposed algorithm is better than conventional methods by around 2dB, and blocky artifacts and blur artifacts are significantly diminished.

Design of Prediction Unit for H.264 decoder (H.264 복호기를 위한 효율적인 예측 연산기 설계)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.47-52
    • /
    • 2009
  • H.264 video coding standard is widely used due to the high compression rate and quality. The motion compensation is the most time-consuming and complex unit in the H.264 decoder. The performance of the motion compensation is determined by the calculation of pixel interpolation and management of the reference pixels. The reference pixels read from external memory using efficient memory management for data reuse is necessary along with the high performance interpolators. We propose the architecture of a motion compensation unit for H.264 decoders. It is composed of 2-dimensional circular register files, a motion vector predictor and high performance interpolators with low complexity. The 2-dimensional circular register files reuse reference pixel data as much as possible, and feed reference pixel data to interpolators without any latency and complex logic circuits. We design a motion compensation unit and a intra-prediction unit and integrate them into a prediction unit and verify the operation and the performance.

Interpolation Error Concealment Method of Motion Compensated Interpolated Frame for Motion Compensated Frame Rate Conversion (움직임 보상 프레임 율 변환 기법을 위한 움직임 보상 보간 프레임의 보간 오류 은닉 기법)

  • Lee, Jeong-Hun;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.927-928
    • /
    • 2008
  • In this paper, a interpolation error concealment algorithm of motion compensated interpolated frame for motion compensated frame rate conversion to reduce the block artifacts caused by failure of conventional motion estimation based on block matching algorithm is proposed. Experimental results show good performance of the proposed scheme with significant reduction of the block artifacts.

  • PDF