본 논문에서는 시공간 정보를 이용하여 동영상에서 움직이는 객체를 자동으로 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법은 다른 영역과 구별되는 현저한 장소에 무의식적으로 집중되는 시각주의 특성을 컴퓨터 시스템에 도입한 대비 지도(contrast map)와 중요 특징점(salient point)을 적용한 것이 큰 특징이라고 할 수 있다. 대비 지도는 밝기(luminance), 색상(color) 그리고 방향성(direction) 3가지의 특징 정보 중 자기와 방향성의 특징을 나타내는 자기 지도(luminance map)와 방향성 지도(directional map)를 결합하여 대비 지도를 생성한다. 또한, 사람이 시각적으로 볼 때 의미 있다고 생각하는 중요 특징점을 웨이블릿 변환을 이용하여 찾아낸다. 이렇게 생성된 대비 지도와 중요 특징점을 이용하여 대략적인 집중윈도우(AW:Attention Window)의 위치와 크기를 결정한다. 다음으로, 동영상의 가장 큰 특징인 움직임 정보를 추정하여 집중윈도우를 객체에 가장 근사하게 축소시키고, 윤곽선 정보를 이용하여 객체를 추출한다. 윤곽선을 추출하기 위해 캐니에지(canny edge)를 사용하였으며, 배경의 윤곽선 제거를 위하여 윤곽선의 차이(DE:Difference of Edge)를 이용하여 가로 후보영역과 세로 후보영역을 추출한다. 추출된 2개의 후보영역을 AND연산과 모폴로지 연산을 이용하여 객체를 자동으로 추출하는 방법을 제안한다. 실험은 카메라가 고정된 상태에서 촬영한 동영상에 대해 이루어 졌으며, 객체와 배경이 효과적으로 분리되는 것을 확인하였다.
최근 모바일 기기의 보급이 증가되고, 고급 어플리케이션의 동작이 가능해지는 등 모바일 장비의 사용 편이성이 급속도로 증가되고 있다. 또한 GPS 기술의 발전으로 인해 위치 기반 서비스가 여러 분야에서 널리 사용되고 있다. 본 논문에서는 고정된 노선을 이동하는 버스를 대상으로 목적지까지의 최단 시간 경로를 제공하는 교통 정보 시스템을 제안한다. 이를 위해 우선, 이동 객체인 버스와 관련된 정보를 효율적으로 저장, 관리, 검색할 수 있는 스키마와 질의 모델을 제안한다. 또한, 제안된 시스템에서는 최단 시간 경로를 위해 버스의 노선 정보 및 위치 정보, 정류장간 소요 시간 정보, 사용자의 근접 정류장까지의 이동 시간, 사용자의 도보 이동 시간 등의 정보를 활용한다. 대부분의 위치기반 서비스를 위한 시공간데이터베이스 기술에서는 이동 객체가 시간의 흐름에 따라 속도와 방향의 변화로 인한 임의의 동선으로 움직인다고 가정하고 있으며, 버스와 같이 고정된 노선을 이동하는 이동 객체의 관리 기법은 다루어지지 않고 있다. 따라서 본 논문의 연구 결과는 고정된 노선을 이동하는 이동 객체의 저장 및 이동 객체의 미래 위치 예측 기법에 활용될 수 있다.
연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명 조건의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델 (GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 제안되어 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 a(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값의 분산 등을 이용하여 학습률 a값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.
본 논문에서는 비디오 스트림으로부터 움직이는 객체를 추출하기 위해 고유 배경(eigenbackground)을 사용하여 효율적으로 배경을 모델링하는 방법을 제안한다. 배경은 모델링하더라도 시간이 지남에 따라 날씨나 조명의 변화에 따라 변화가 발생하므로 변화 요소를 반영할 수 있도록 배경 모델을 갱신해야 한다. 이를 위해 본 논문에서는 R-SVD 방법에 기반을 두고 배경 모델을 갱신하도록 한다. 이 때 영상 변화도를 정의하여 이 값에 따라 동적으로 배경을 모델링하여 처리시간을단축할 수 있도록 한다. 또한 고유 배경을 사용하는경우 충분한 훈련 데이터를사용해야만 정확한 모델을 생성할 수 있지만 본 논문에서는 적은 수의 데이터만을 사용하여 정확한 모델을 생성할 수 있도록 입력 프레임을 재구성하여 사용한다. 제안한 방법은 초기 고유 배경 모델 및 기존의 주기적으로 배경을 갱신하는 방법과의 비교를 통해 그 우수성을 확인한다.
현재 국내외 여러 국가에서 한 가정의 차량의 수요가 증가하여 차량의 탑승 인원은 적어지고 도로의 차량 수는 증가하고 있는 추세이다. 이에 따른 문제점인 교통 체증을 해결하기 위해 이용 가능한 다인승 전용차로 제도가 시행되고 있다. 이 제도는 경찰들이 빠르게 움직이는 차량을 직접 눈으로 감시하여 불법 차량을 단속하는 실정이며, 이는 정확성이 낮고 사고의 위험성을 동반된다. 이러한 문제점을 해결하기 위해 도로 현장의 영상을 이용한 딥러닝 객체 인식 기술을 적용한다면 앞서 말한 문제점들이 해결될 것이다. 따라서, 본 논문에서는 기존의 딥러닝 모델의 성능을 비교·분석하여, 영상을 통해 실시간 차량 탑승 인원을 파악할 수 있는 딥러닝 모델을 선정하고 객체 인식 모델의 문제점을 보완한 차량 탑승 인원 감지 알고리즘을 제안한다.
물체를 추적하는데 있어서 추적하고자 하는 물체를 검출하여 템플릿을 만드는 것과 두 물체가 겹쳐지거나 다른 배경에 가려진 물체를 구분하여 추적하는 것은 물체 추적에 있어서 중요한 문제이다. 물체를 검출하여 템플릿을 만드는 방법으로 frame difference를 이용하면 천천히 움직이는 물체를 잘 구분할 수 없는 문제점이 있다. 이를 해결하기 위하여 본 논문에서는 adaptive 3-frame difference를 이용하여 정확한 물체의 템플릿을 생성하는 알고리즘을 제안한다.
Background Subtraction은 움직이는 물체 검출에 가장 많이 사용되는 방법 중 하나이다. 배경이 복잡하고 변화가 심한 경우, 배경을 실시간으로 얼마나 정확하게 학습하는가가 물체 검출의 정확도를 결정한다. Gaussian Mixture Model은 이러한 배경의 모델링에 가장 많이 쓰이는 방법이다. Gaussian Mixture Model은 확률적 학습 방법을 사용하는데, 이러한 방법은 물체가 자주 지나다니거나 물체가 멈춰있는 경우, 배경을 정확하게 모델링하지 못한다. 본 논문에서는 밝기 값에 대한 확률적 모델링과 밝기 값의 변화에 따른 처리를 결합하여 혼잡한 환경에서 배경을 정확하게 모델링할 수 있는 학습 방법을 제안한다.
양방향 데이터 방송 기술이 급속도로 발전하고 전세계적으로 표준화가 진행되고 있는 가운데 데이터 방송 콘텐츠에 대한 수요는 제자리를 맴돌고 있다. 이는 특화된 데이터 방송 콘텐츠에 대한 필요성을 의미하는 것으로 본 논문에서는 시나리오를 기반으로 기존 방송 콘텐츠를 활용하여 데이터 방송 부가 콘텐츠를 제작하는 모델안을 제안한다. 연구 모델은 1)시나리오 기반으로 기존 데이터 방송 콘텐츠 분석, 2)분석된 객체 아이템 메타데이터 스키마 설계 3)부가 콘텐츠 화면 구현의 단계로 구성한다. DMB 단말환경에서 가볍게 움직이는 콘텐츠 제작을 위해 메타데이터를 25개로 제한하고 이 안에서 Content Description, Shot Detection, Object Tracking로 메타데이터를 구분하여 스키마 다이어그램을 설계한다. 본 논문은 기존의 익숙한 콘텐츠를 재가공하여 제공함으로 DMB 수요 활성화 측면과 CP의 제작 비용감소 측면에서 긍정적인 영향을 끼칠 것으로 예상된다.
본 논문에서는 CHT(Circular Hough Transform)을 이용한 이동 로봇의 물체 추적 방식을 제안한다. 제안한 방식은 연산 속도를 높이기 위해 1차원 투영방법을 이용하여 움직이는 객체의 영역을 추출하고, CHT를 적용하여 원형의 물체를 검출한다. 제안한 방식의 유용성을 확인하기 위하여 CMOS 카메라를 장착한 ARM 프로세서 기반의 이동로봇을 설계하여 공 모양의 이동 물체 추적 실험을 수행한다.
밀집된 돈방에서 사육되는 돼지의 공격적인 행동들은 돼지의 성장에 심각한 악영향을 주고, 이는 농가의 경제적 손실로 이어진다. 따라서 돈방 내의 비정상 상황들을 지속적으로 모니터링할 수 있는 IT기반의 영상 감시 시스템이 요구된다. 본 논문에서는 돼지의 행동 분석 이전에 필수적으로 선행되어야 하는 개별 돼지의 탐지를 위한 키넥트 카메라 기반의 새로운 모니터링 시스템을 제안한다. 먼저, 배경차영상 기법과 깊이 임계값을 이용하여 서있는 돼지만을 탐지한다. 둘째, 서있는 돼지들 중에서 움직임이 있는 돼지만을 관심영역으로 설정하여 탐지한다. 마지막으로, 서서 움직이는 돼지들 사이에서 발생하는 근접 문제를 깊이 정보를 이용한 등고선기법을 제안 적용하여 돼지 객체의 탐지를 완성한다. 실제 세종에 위치한 한 돈사에서 취득한 깊이 영상 정보를 이용하여 본 논문에서 제안하는 시스템의 성능을 실험적으로 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.