• Title/Summary/Keyword: 운전자 신경 근육 모델

Search Result 4, Processing Time 0.021 seconds

Development of Human Driver Model based on Neuromuscular System for Evaluation of Electric Power Steering System (전동식 조향 장치의 성능 평가를 위한 신경 근육계 기반 운전자 모델 개발)

  • Lee, Sunghyun;Lee, Dongpil;Lee, Jaepoong;Chae, Heungseok;Lee, Myungsu;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2017
  • This paper presents a lateral driver model with neuromuscular system to evaluate the performance of electric power steering (EPS). Output of most previously developed driver models is steering angle. However, in order to evaluate EPS system, driver model which results in steering torque output is needed. The proposed lateral driver model mainly consists of 2 parts: desired steering angle calculation and conversion of steering angle into steering torque. Desired steering angle calculation part results in steering angle to track desired yaw rate for path tracking. Conversion of steering angle into torque is consideration with neuromuscular system. The proposed driver model is investigated via actual driving data. Compared to other algorithms, the proposed algorithm shows similar pattern of steering angle with human driver. The proposed driver can be utilized to efficiently evaluate EPS system in simulation level.

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.

A Study On Driver Model far Steering Simulation of Vehicle (차량의 조향 시뮬레이션을 위한 운전자 모델에 대한 연구)

  • ;;;Ichiro Kageyama
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.245-253
    • /
    • 2002
  • A driver model with nervous neuromuscular system was developed to steer a vehicle along the prescribed path during handling simulations. A 3-dimensional vehicle model with 10 DOF and 3 DOF steering handle are used to perform a computer simulation. PID and fuzzy controller are used to perform single and double lane change, and their tracking abilities were compared. The effects of time delay and preview distance are also investigated, and it is demonstrated that the driver model developed can be an aid far objective evaluation of vehicle handling simulation.

Development and Validation of A Finite Optimal Preview Control-based Human Driver Steering Model (최적예견 제어 기법을 이용한 운전자 조향 모델의 개발 및 검증)

  • Kang, Ju-Yong;Yi, Kyong-Su;Noh, Ki-Han
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.855-860
    • /
    • 2007
  • This paper describes a human driver model developed based on finite preview optimal control method. The human driver steering model is constructed to minimize a performance index which is a quadratic form of lateral position error, yaw angle error and steering input. Simulation studies are conducted using a vehicle simulation software, Carsim. The Carsim vehicle model is validated using vehicle test data. In order to validate the human driving steering model, the human driver steering model is compared to the driving data on a virtual test track(VTT) and the actual vehicle test data. It is shown that human driver steering behaviors can be well represented by the human driver steering model presented in this paper

  • PDF