• Title/Summary/Keyword: 운동추종

Search Result 70, Processing Time 0.024 seconds

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.

A Study on Vehicle to Road Tracking Methodology with Consideration of vehicle lateral dynamics (차량 횡방향 운동 방정식을 고려한 차대도로간 트래킹 기법)

  • Shin, Dongho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.219-230
    • /
    • 2017
  • This paper proposes a vehicle to road tracking algorithm based on vision sensor by using EKF(Extended Kalman Filter). The lateral offset, heading angle, and curvature which are obtained from vehicle to road tracking might be used as inputs to steering controller of LKAS(Lane Keeping Assist System) or for the warning decision logic of LDWS(Lane Departure Warning System). To the end, in this paper, the yaw rate, steering angle, and vehicle speed as well as lane raw points together with considering of vehicle lateral dynamics are utilized to improve the exactness and convergence of the vehicle to road tracking. The proposed algorithm has been tested at a proving ground that consists of straight and curve sections and compared with GPS datum using DGPS-RTK equipment to show the feasibility of the proposed algorithm.

The body image of women participants in the convergence Walking impact on the psychological dimension happiness from the interdisciplinary perspective (융·복합적 차원에서 걷기 운동 여성참여자의 신체이미지가 심리적 행복에 미치는 영향)

  • Kim, Pum-Ho;Ju, Sung-Bum;Choo, Jong-Ho
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.317-325
    • /
    • 2015
  • The purpose of this study is fusion-dimensional image of the body standing walking exercise female participants to convergence investigate the effects of psychological happiness In order to serve this purpose, questionnaires were used for females who participated into the walking program worked on by the National Health Insurance Corporation in 2014. A convenience sample was used for 150 subjects. Unanswered questions and questionnaires that did not meet normalcy were excluded, and 135 samples were extracted to use them for final analysis. Frequency analysis was performed for the collected data in order to examine demographical characteristics by using the SPSS/WIN 20.0 V program. In addition, multiple regression analysis was performed in order to resolve research issues. Cronbach' ${\alpha}$ verification and exploratory factor analysis were performed. The result of the aforementioned research and data analysis in this study is as follows: Perceived competence, looks, and health during the walking of female participants turned out to make static, positive effects on immersion and happiness, which were the lower-level factor of psychological happiness.

Motion Analysis and LQG/LTR Control of a Proportional Solenoid Valve (비례 솔레노이드 밸브의 운동해석 및 LQG/LTR 제어)

  • Kim, Ki-Bum;Kim, In-Soo;Kim, Yeung-Shik;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1607-1612
    • /
    • 2011
  • In this study, dynamic analysis of a proportional solenoid valve is performed, and an LQG/LTR controller with an integrator is designed to control the proportional solenoid valve. The dynamic characteristic of a valve is identified using experimental data by employing the frequency-domain modeling technique. The purpose of LQG/LTR control with an integrator is to enhance the system response and to improve the tracking accuracy for a complex input signal. Experimental tests are performed to verify the performance of the controller, and the results prove the high performance of the controller.

The Improvement of Machining Accuracy and Compensation of Feeding Error in CNC Lathe Using Ultra Precision Fast Tool (초정밀 FTS 시스템을 이용한 CNC Lathe 스핀들 이송오차 보상 및 가공정밀도 향상)

  • Kim, Jae-Yeol;Kwak, Nam-Su
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50 nm for some precision parts but not in all. The machining system and technology should be at very high performed level in order to accomplish this degree of the ultra-precision.

development of a Depth Control System for Model Midwater Trawl Gear Using Fuzzy Logic (퍼지 논리를 이용한 모형 증층트롤 어구의 수심제어시스템 개발)

  • 이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.54-59
    • /
    • 2000
  • This paper presents a control system that uses a fuzzy algorithm in controlling the depth of a model midwater trawl net, and experimental results carried out in the circulating water channel by using a model trawl winch system.The fuzzy controller calculates the length of the warp to be changed, based on the depth error between the desired depth and actual depth of the model trawl net and the ratio of change in the depth error. The error and the error change are calculated every sampling time. Then the control input, i.e. desirable length of the warp, is determined by inference from the linguistic control rules which an experienced captain or navigator uses in controlling the depth of the trawl winch controller and the length of the warp is changed. Two kinds of fuzzy control rules were tested, one was obtained from the actual operations used by a skilled skipper or navigator, and the other was a modified from the former by considering the hydrodynamic characteristics of the model trawl system.Two kinds of fuzzy control were tested, one was obtained fro the actual operations used by a skilled skipper or navigator, and the other was a modified from the former by considering the hydrodynamic characteristics of the model trawl system.The results of these model experiments indicate that the proposed fuzzy controllers rapidly follow the desired depth without steady-state error although the desired depth was given in one step, and show robustness properties against changes in the parameters such as the change of the towing sped. Especially, a modified rule shows smaller depth fluctuations and faster setting times than those obtained by a field oriented rule.

  • PDF

Study on Design of Mobile Robot for Autonomous Freight Transportation (무인 화물이송 이동로봇의 설계에 관한 연구)

  • Jeong, Dong-Hyuk;Park, Jin-Il;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.202-207
    • /
    • 2013
  • In the paper, we design a autonomous mobile robot for freight transportation and propose an operation method of the robot in the warehouse. In order to implement autonomous navigation, it is needed to recognize the position of the robot and track the path to the target. Previous methods are hard to change the workspace environment and need high cost to install and keep a maintenance of the system. The lifter of freight transportation robot is designed to load and unload a baggage through up and down motion. Also, ultrasonic sensor, RFID, QR-code and camera sensor is used to carry out various functions while the robot navigates in the various environment. We design an operation method of the mobile robot in order to effectively arrive a goal position and transport a freight. The proposed methods are verified through various experiments.

Mitigation of Mechanical Loads of NREL 5 MW Wind Turbine Tower (NREL 5MW 풍력 터빈 타워의 기계적 하중 완화)

  • Nam, Yoon-Su;Im, Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1455-1462
    • /
    • 2012
  • As the size of a wind turbine increases, the mechanical structure has to have an increasing mechanical stiffness that is sufficient to withstand mechanical fatigue loads over a lifespan of more than 20 years. However, this leads to a heavier mechanical design, which means a high material cost during wind turbine manufacturing. Therefore, lightweight design of a wind turbine is an important design constraint. Usually, a lightweight mechanical structure has low damping. Therefore, if it is subjected to a disturbance, it will oscillate continuously. This study deals with the active damping control of a wind turbine tower. An algorithm that mitigates the mechanical loads of a wind turbine tower is introduced. The effectiveness of this algorithm is verified through a numerical simulation using GH Bladed, which is a commercial aero-elastic code for wind turbines.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

In-Flight Simulation for the Evaluation of Flight Control Law (비행제어계 평가를 위한 항공기 공중모의 비행시험)

  • Go,Jun-Su;Lee,Ho-Geun;Lee,Jin-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.79-88
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The FBWA configurations are of the same generic form of the Korean advanced trainer. The normal acceleration (Nz) and pitch rate (q) feedback control system is employed for longitudinal axis and roll rate (p) and lateral acceleration (Ny) feedback flight control law is developed in lateral/ directional axis. The flight tests for the FBW A dynamics evaluation were executed for the target aircraft (FBWA) on the IFS (In-Flight-Simulator) aircraft . The test results showed that Level 1 handling qualities for the most unstable flight regime and Level 1/2 for the landing approach flight regime were achieved. And the designed FBWA flight control law has revealed acceptable CHR (Cooper-Harper handling qualities Ratings).