• Title/Summary/Keyword: 우주 자원 탐사

Search Result 50, Processing Time 0.019 seconds

Geotechnical Exploration Technologies for Space Planet Mineral Resources Exploration (우주 행성 광물 자원 탐사를 위한 지반 탐사 기술)

  • Ryu, Geun-U;Ryu, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.19-33
    • /
    • 2022
  • Planarity geotechnical exploration missions were actively performed during the 1970s and there was a period of decline from the 1 990s to the 2000s because of budget. However, exploring space resources is essential to prepare for the depletion of Earth's resources in the future and explore resources abundant in space but scarce on Earth, such as rare earth and helium-3. Additionally, the development of space technology has become the driving force of future industry development. The competition among developed countries for exoplanet exploration has recently accelerated for the exploration and utilization of space resources. For these missions and resource exploration/mining, geotechnical exploration is required. There have been several missions to explore exoplanet ground, including the Moon, Mars, and asteroids. There are Apollo, LUNA, and Chang'E missions for exploration of the Moon. The Mars missions included Viking, Spirit/Opportunity, Phoenix, and Perseverance missions, and the asteroid missions included the Hayabusa missions. In this study, space planetary mineral resource exploration technologies are explained, and the future technological tasks of Korea are described.

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Construction of Korea Remote Sensing Center's Homepage and it's Operation (공공원격탐사센터 홈페이지 구축 및 운용)

  • 임효숙;김용승;김윤수;김인수;서두천;이광재;이선구
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.15-20
    • /
    • 2003
  • 한국항공우주연구원은 공공기술연구회 산하 한국지질자원연구원, 한국해양연구원, 한국건설기술연구원과 협력하여 2002년 4월 17일에 본격적인 원격탐사 연구 및 공공지원 업무의 주축을 담당하게 될 공공원격탐사센터를 설립하였다. 별도의 독립조직이 아니라 원격탐사위성인 아리랑위성을 개발, 운영하고 있는 한국항공우주연구원을 중심으로, 한국해양연구원, 한국지질자원연구원, 한국건설기술연구원등 관련기관이 해양분야, 지상분야, 건설분야 등 각 전문분야 별로 협동연구 체계를 구축, 실질적인 국가원격탐사센터 역할을 수행할 것이다. 이와 같이 설립된 공공원격탐사센터에 대한 홍보, 위성자료의 공공활용 지원 및 원격탐사 Tutorial 등을 사용자들이 쉽게 접속하여 이용할 수 있도록 공공원격탐사센터 홈페이지를 구축하여 Open 하게 되었다. 공공원격탐사센터 본부인 한국항공우주연구원을 비롯하여 전문센터별로도 홈페이지를 구축하여 서로 연결되도록 하였다. 2003년도에는 이와 같이 open 된 홈페이지에 위성자료 통합 DB를 구축하여 서비스할 예정이다.

  • PDF

Space Rover Development and Domestic Technology (우주로버의 개발현황과 국내의 관련기술 현황)

  • Ahn, Seok-Min;Lee, Yung-Gyo;Kim, Sung-Phil;Kim, Tae-Sik;Moon, Sang-Man
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • One of the purposes of space exploration is to be able to utilize the unlimited natural resources in the universe. For this purpose, plans for lunar and mars bases have been proposed by leading nations. In order to construct bases and search for resources, it is necessary to employ and develop rovers for surface navigation and exploration. With proper knowledge about Lunar surface, technology for lunar rover development can be established without serious obstacles, since robot technology for rover development has been well prepared in Korea. In this paper, lunar rovers and mars rovers developed and planned by other countries as well as the current status of robot technology in Korea have been analyzed.

  • PDF

Legal Issues in Commercial Use of Space Resources: Legal Problems and Policy Implications of U.S. Commercial Space Launch Competitiveness Act of 2015 (우주 자원의 상업적 이용에 관한 법적 문제 - 미국의 2015년 '우주 자원의 탐사 및 이용에 관한 법률' 의 구조와 쟁점 -)

  • Kim, Young-Ju
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.419-477
    • /
    • 2017
  • In Space contains valuable natural resources. These provide a compelling reason for entrepreneurs, investors, and governments to pursue space exploration and settlement. The Outer Space Treaty of 1967 explicitly forbids any government from claiming a celestial resource such as the Moon or a planet. Article II of the Outer Space Treaty states that "outer space, including the Moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means." The U.S. Commercial Space Launch Competitiveness Act of 2015 (CSLCA), however, makes significant advances in furthering U.S. commercial space industry, which explicitly allows U.S. citizens to engage in the commercial exploration and exploitation of 'space resources' including water and minerals. Thus, some scholars argue that the United States recognizing ownership of space resources is an act of sovereignty, and that the act violates the Outer Space Treaty. This paper suggests that it is necessary to guarantee the right to resources harvested in outer space. More specifically, a private ownership of extracted space resources needs to promote new space business and industry. As resources on Earth become increasingly difficult and expensive to mine, it is clear that our laws and policies must encourage private appropriation of space resources. CSLCA which addresses all aspects of space resource extraction will be one way to encourage space commercial activity.

  • PDF

Precision exploration of space resources using laser-induced breakdown spectroscopy (레이저 유도 플라즈마 분광분석법을 활용한 정밀 우주 자원 탐사)

  • Choi, Soo-Jin;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • A short laser pulse irradiates a sample to create the highly energetic plasma that emits light of a specific wavelength peak according to the material. By identifying different peaks for the analyzed samples, its chemical composition can be rapidly determined. The LIBS (Laser-Induced Breakdown Spectroscopy) has great advantages as an elemental analyzer on board a space rover, namely real-time rapid analysis and stand-off detection. The LIBS signal intensity is remarkably increased by using double-pulse LIBS system for component analysis of lunar environments where the surrounding pressure is low. Also the angle of target is adjusted for replicating arbitrary shapes of the specimen.

인공위성 원격탐사에 의한 지구 수계환경 감시

  • 박경윤
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.36-41
    • /
    • 1991
  • 1960년대 초부터 미 국립항공우주국(NASA)에서 기상위성을 지구궤도에 올리면서 시작되고 우주개발 선도국들에 의해 수 없이 발사되어 지구상공을 선회하고 있는 각종 실험위성, 자원탐사위성들로부터 이전까지만해도 지엽적이고 단편적인으로 알려지던 지구환경현황들이 이제는 지구전체에 대한 시시각각의 정보로 확대되고 있다. 기상위성들에 장착된 Sensor들로는 구름과 기상현상의 분포는 물론이고 각 대양의 해수면 온도 분포들이 파악되고 있으며 식물지수에 의한 지상의 식물분포의 계절적 변화양상에서 열대림의 사막화 추세들까지도 분석된다. 특히 위성탐사에 의한 남극 오존홀 (Ozone Hole)의 확인은 최근악화 되고 있느 swlrnchs 환경문제에 대한 커다란 주의를 환기시켜 주었다. 대양의 Phytoplankton 분포가 계절에 따라 위성자료에 의해 분석되므로서 해양의 생산능력(Productivity)의 변화도 알게되고 있다. 해양수면의 높이를 측정했던 초단파(microwave)영역의 SAR 자료는 구름을 투과하여 지구표면을 전천후 Monitoring할 수 있는 다음 세대의 Sensor로 각광을 받고 있으며 앞으로 유럽과 일본, 카나다, 소련 등에서 이들 새로운 Sensor들이 탑재 될 자원탐사 위성(ERS)과 RADASAT 등의 위성이 계속해서 개발되고 있어 이들에 의한 지구환경상태 진단은 크게 각광받게 될 것이다. 그외에도 해면풍 운량, 총강우량 분포, 대기 투명도, 대기의 열수지등의 계절적 변화에 대한 인공위성자료 해석을 통하여 지구의 온난화nas제가 본격적으로 ud가되고 있다. 또한 자원탐사위성인 Landsat 과 SPOT 등의 위성에 의해서는 각대륙의 토지 이용도 변화, 토사의 이도, 지질도 작성, 입체도 제착등과 농산물수확량의 예측있어서 괄목할 만한 발전이 계속되고 있다. 더욱이 NASA와 일본, 유럽등에서 지구관측을 위해서 준비하고 있는 각종 지구관측위성(EOS)들이 실용화 될 2000년 대에는 일반 지구환경감시는 물론 수계환경 감시 체계구축에 획기적인 진전이 있을 것으로 기대된다.

  • PDF

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction (달 기지 건설을 대비한 국내외 달 탐사 동향 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.144-152
    • /
    • 2018
  • Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

A Comparative Study between Space Law and the Law of the Sea (우주법과 해양법의 비교 연구)

  • Kim, Han-Taek
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.2
    • /
    • pp.187-210
    • /
    • 2009
  • Space law(or outer space law) and the law of the sea are branches of international law dealing with activities in geographical ares which do not or do only in part come under national sovereignty. Legal rules pertaining to the outer space and sea began to develop once activities emerged in those areas: amongst others, activities dealing with transportation, research, exploration, defense and exploitation. Naturally the law of the sea developed first, followed, early in the twentieth century, by air law, and later in the century by space law. Obviously the law of the sea, of the air and of outer space influence each other. Ideas have been borrowed from one field and applied to another. This article examines some analogies and differences between the outer space law and the law of the sea, especially from the perspective of the legal status, the exploration and exploitation of the natural resources and environment. As far as the comparisons of the legal status between the outer space and high seas are concerned the two areas are res extra commercium. The latter is res extra commercium based on both the customary international law and treaty, however, the former is different respectively according to the customary law and treaty. Under international customary law, whilst outer space constitutes res extra commercium, celestial bodies are res nullius. However as among contracting States of the 1967 Outer Space Treaty, both outer space and celestial bodies are declared res extra commercium. As for the comparisons of the exploration and exploitation of natural resources between the Moon including other celestial bodies in 1979 Moon Agreement and the deep sea bed in the 1982 United Nations Convention on the Law of the Sea, the both areas are the common heritage of mankind. The latter gives us very systematic models such as International Sea-bed Authority, however, the international regime for the former will be established as the exploitation of the natural resources of the celestial bodies other than the Earth is about to become feasible. Thus Moon Agreement could not impose a moratorium, but would merely permit orderly attempts to establish that such exploitation was in fact feasible and practicable, by allowing experimental beginnings and thereafter pilot operations. As Professor Carl Christol said until the parties of the Moon Agreement were able to put into operation the legal regime for the equitable sharing of benefits, they would remain free to disregard the Common Heritage of Mankind principle. Parties to one or both of the agreements would retain jurisdiction over national space activities. In so far as the comparisons of the protection of the environment between the outer space and sea is concerned the legal instruments for the latter are more systematically developed than the former. In the case of the former there are growing tendencies of concerning the environmental threats arising from space activities these days. There is no separate legal instrument to deal with those problems.

  • PDF

Characteristics of Laser-Induced Breakdown Spectroscopy (LIBS) at Space Environment for Space Resources Exploration (우주 자원 탐사를 위한 레이저 유도 플라즈마 분광분석법의 우주 환경에서의 특성 분석)

  • Choi, Soo-Jin;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.346-353
    • /
    • 2012
  • The Laser-Induced Breakdown Spectroscopy (LIBS) has great advantages as an analytical technique, namely real-time analysis without sample preparation, ideal for mobile chemical sensor for space exploration. The LIBS plasma characteristics are strongly dependent on the surrounding pressure. In this study, seven types of target (C, Ti, Ni, Cu, Sn, Al, Zn) were investigated for their elemental lifetime. The target was located in vacuum chamber which has the pressure range of 760 to $10^{-5}$ torr. As the pressure is decreased, the elemental lifetimes of carbon and titanium declined, while all other targets showed increased lifetimes until reaching 1 torr and declined with continued pressure decrease. The boiling point and electronegativity amongst the physicochemical properties of the samples are used to explain this peculiarity.