• Title/Summary/Keyword: 우주 열제어

Search Result 130, Processing Time 0.025 seconds

Characteristics of Jet Type Flame Holder for Ramjet Engine Combustors (램제트 엔진 연소기용 제트분사형 화염안정기의 특성분석)

  • Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.14-20
    • /
    • 2007
  • In this study, characteristics of jet type flame holder for ramjet engine combustors are investigated Jet flame holder can be easily controlled by the injection angle change and jet momentum variation without any thermal protection devices. Due to the intensive turbulent mixing effect, jet flame holder shows better flame holding performance than mechanical flame holders such as cavity, step and v-shape flame holder.

  • PDF

Thermal Behavior of Spacecraft Liquid-Monopropellant Hydrazine($N_2$$H_4$) Propulsion System (인공위성 단기액체 하이드라진($N_2$$H_4$) 추진시스템의 열적 거동)

  • Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1999
  • Thermal behavior of spacecraft propulsion system utilizing monopropellant hydrazine ($N_2$$H_4$) is addressed in this paper. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was test-verified under simulated on-orbit environment. The on-orbit environment was thermally achieved in space-simulation chamber and by the absorbed-heat flux method that implements an artificial heating through to the spacecraft bus panels enclosing the propulsion system. Test results obtained in terms of temperature history of propulsion components are presented and reduced into duty cycles of the avionics heaters which are dedicated to thermal control of those components. The duty cycles are subsequently converted into the electrical power required in the operational orbit. Additionally, cyclic temperature of each component, which was made under thermal-balanced condition of spacecraft, is compared to the acceptable design range and justified from the viewpoint of system verification.

  • PDF

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

Design and Thermal Analysis of Focal Plane Assembly Cooling Unit of Earth Observation Camera (저궤도 지구관측위성 주탑재체 냉각유닛 설계와 열해석)

  • Seo, Joung-Ki;Cho, Hee-Ken;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin;Kang, Seok-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.580-585
    • /
    • 2009
  • Thermal analysis and design of FPA(Focal Plane Assembly)-CU(Cooling Unit) for Earth observation camera is performed. FPA-CU is the first cooling device for a spacecraft which is designed and manufactured by its own technology in Korea. FPA-CU has a special feature, TBM(Thermal Buffer Mass) which is discriminated from typical cooling devices using heat pipes and radiator. TBM can be regarded as a thermal energy reservoir and it shows thermally transient characteristics, which make it difficult to design the size and shape of TBM. In current study, a method to determine the volume and the size of TBM is proposed and validated. The transient thermal analysis for FPA-CU for 5 operational scenarios is performed and validates the final design of FPA-CU (Radiator,TBM, Heat pipe I/F). In case of an abnormal operation of a heat pipe among three radiator heat pipes, the temperature of FPA can be increased $3{\sim}4^{\circ}C$ according to the numerical simulation.

Heat Flux Analysis of Lunar Lander for Potential Landing Candidate Area (달 착륙선의 착륙 후보지별 열 유입량 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.324-331
    • /
    • 2018
  • The thermal environment on lunar surface is more severe than that of earth's surface or low earth orbit because of the long daytime and nighttime due to 28 days of rotation cycle of moon. Thus, analyzing heat flux on lunar lander at potential landing sites is important to determine the landing site in its initial design phase. In this study, thermal model of lunar regolith that can simulate lunar surface temperature was constructed for analyzing thermal characteristics according to the potential landing sites of lunar lander. The heat flux analyses were performed various latitudes of equator, mid-latitude, polar regions, lunar mare and highland. In addition, we also investigated the heat flux of lunar lander when it is landed on adjacent area to hill.

Study on the application of a realtime simulator to the development of a controller for a space thermal environment chamber (실시간 플랜트 시뮬레이터를 이용한 우주 열환경 챔버 제어기 개발에 관한 연구)

  • Jung, Mu-Jin;Shin, Young-Gy;Choi, Seok-Weon;Moon, Guee-Won;Seo, Hee-Jun;Lee, Sang-Hoon;Cho, Hyok-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.216-221
    • /
    • 2003
  • A thermal vacuum chamber is mainly used to simulate thermal environments of a test satellite in satellite orbits in which daily temperature variations range from 80K to above 400K depending on solar radiation under the vacuum below $10^{-4}$ torr. The test facility is quite complex and consists of expensive parts. So any modification of control software is discouraged in fear of unexpected system failure. The purpose of this study is to develop a realtime dynamics model of the thermal vacuum chamber in view of controller design and simulate its electrical inputs and outputs for interface with a PLC (programmable logic controller). A PLC program that was used in the thermal vacuum chamber is applied to the realtime simulator. The realized simulator dynamics is found to be quite similar to that of the thermal vacuum chamber and serve to an appropriate plant to verify the control performance of a programmed PLC.

  • PDF

미소진동 감쇠를 위한 진동저감 장치 연구

  • Kim, Chang-Ho;Kim, Gyeong-Won;Im, Jae-Hyeok;Kim, Hong-Bae;Hwang, Do-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.32.3-32.3
    • /
    • 2011
  • 통신위성은 지향성에 대한 요구조건이 상대적으로 느슨하지만 광학 카메라나 영상 레이다를 이용하여 지구를 관측하는 관측위성의 경우 고품질의 영상을 위해 정밀한 지향성 및 지향 안정성이 요구되나 극심한 열 하중에 의한 열변형 및 임무궤도 상에서 발생하는 미소진동 등은 지향 안정성을 영향을 주며 영상의 품질을 저하시킨다. 특히 자세제어를 위해 쓰이는 반작용휠이나 지상과의 송수신을 위한 안테나들은 그 기능을 수행하기 위해 작동하는 과정에서 미소진동을 발생시키고 이는 카메라나 레이다에 외란으로 작용하기 때문에 이를 최소화할 필요가 있다. 이 논문은 미소진동을 저감시키기 위한 진동저감 장치의 성능과 효율성 분석을 그 목적으로 한다.

  • PDF

탑재소프트웨어 프로그래밍 언어 비교 - C vs. ADA

  • Park, Su-Hyeon;Gu, Cheol-Hoe;Gang, Su-Yeon;Lee, Sang-Gon
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.46.2-46.2
    • /
    • 2009
  • 탑재소프트웨어는 위성의 자세, 전력, 열 제어를 담당하는 소프트웨어로서 위성의 탑재컴퓨터 상에서 실행된다. 탑재소프트웨어는 추력기, 배터리, 온도조절장치와 같은 위성의 하드웨어 장치를 자치적으로 관리한다. 지상에서 위성을 운영할 수 있도록 탑재소프트웨어는 지상으로부터 명령을 받아서 처리하고, 위성의 텔레메트리 데이터를 지상으로 전송한다. 위성의 탑재소프트웨어를 프로그래밍하기 위하여 C 언어와 ADA 언어가 주로 사용된다. 이 논문에서는 소프트웨어 디자인과 하위레벨 프로그래밍 관점에서 C 언어와 ADA 언어를 비교 분석한다. 프로그래밍언어는 소프트웨어 디자인과 불가분의 관계에 있다. 이 논문은 프로그래밍언어와 함께 다목적실용위성과 통신해양기상위성의 소프트웨어 디자인을 소개한다. 다목적실용위성의 탑재소프트웨어는 절차 지향언어인 C로 작성되었으며, 함수 호출을 기반으로 설계되었다. 통신해양기상위성의 경우, 객체지향언어인 ADA로 작성되었으며, HOOD(Hierarchical Object-Oriented Design) 기법에 따라 모델링되었다. 탑재소프트웨어 프로그래밍언어는 위성의 탑재 하드웨어와 직접적으로 상호작용하도록 요구된다. 이 논문은 C와 ADA 언어가 메모리주소 및 로우 스토리지를 다루는 방법을 보여준다.

  • PDF

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.