DOI QR코드

DOI QR Code

Heat Flux Analysis of Lunar Lander for Potential Landing Candidate Area

달 착륙선의 착륙 후보지별 열 유입량 분석

  • Received : 2017.11.15
  • Accepted : 2018.03.06
  • Published : 2018.04.01

Abstract

The thermal environment on lunar surface is more severe than that of earth's surface or low earth orbit because of the long daytime and nighttime due to 28 days of rotation cycle of moon. Thus, analyzing heat flux on lunar lander at potential landing sites is important to determine the landing site in its initial design phase. In this study, thermal model of lunar regolith that can simulate lunar surface temperature was constructed for analyzing thermal characteristics according to the potential landing sites of lunar lander. The heat flux analyses were performed various latitudes of equator, mid-latitude, polar regions, lunar mare and highland. In addition, we also investigated the heat flux of lunar lander when it is landed on adjacent area to hill.

달 탐사를 위한 착륙선이 운용되는 열환경은 태양에 대한 달의 자전주기가 약 28일인 것에 기인하여 낮 시간과 밤 시간이 지구에 비하여 매우 장기간 지속 되는 등 지표나 지구 저궤도 환경에 비해 더욱 극단적이다. 달 착륙선의 초기 설계 단계에서는 착륙지 선정을 위해 각각의 후보 지역에서의 착륙선으로의 열 유입량 분석이 중요하다. 본 논문에서는 달 착륙선의 후보 착륙지에 따른 열적특성을 분석하고자 달의 표면온도를 모사할 수 있는 표토층의 열모델을 구축하였다. 그리고 상기 표토층에 착륙선을 적용하여 착륙지가 달의 적도, 중위도, 극지방에 위치한 경우, 바다 및 고지대에 위치한 조건에서의 열 유입량을 분석하였다. 또한 언덕의 경사진 지형조건이 착륙선의 열 유입량에 미치는 영향성 분석을 수행하였다.

Keywords

References

  1. Schmitt, H., "Return to the Moon: Exploration, Enterprise and Energy in the Human Settlement of Space", Springer Science & Business Media, New York, 2007.
  2. Jin, S., Arivazhagan, S., and Araki, H., "New Results and Questions of Lunar Exploration from SELENE, Chang'E-1, Chandrayaan-1 and LRO/LCROSS", Advances in Space Research, Vol. 52, 2013, pp. 285-305. https://doi.org/10.1016/j.asr.2012.11.022
  3. Burchell, M. J., Robin-Williams, R., and Foing, B. H., "The SMART-1 Lunar Impact", Icarus, Vol. 207, No. 1, 2010, pp. 28-38. https://doi.org/10.1016/j.icarus.2009.10.005
  4. ZeZhou, S., Yang, J., and He, Z., "Technological Advancements and Promotion Roles of Chang'e-3 Lunar Probe Mission", Science China Technological Sciences, Vol. 56, 2013, pp. 2702-2708. https://doi.org/10.1007/s11431-013-5377-0
  5. Tanaka, S., Mitani, T., Otake, H., Ogawa, K., Kobayashi, N., Hashimoto, T., Hoshino, T., Otsuki, M., Wakabayashi, S., Kimura, J., and Kuramoto, K., "Present Status of the Lunar Lander Project SELENE-2", 44 th Lunar and Planetary Science Conference, Vol. 44, 2013, pp. 1838.
  6. Heiken, G., Vaniman, D., and French, B. M., "Lunar Sourcebook: A User's Guide to the Moon", CUP Archive, Texas, 1991.
  7. Zuliani, H., Oikawa, T., and Yoshida, K., "Thermal based Path Planning using Solar Orientation for a Lunar Micro Rover", 31 th International Symposium on Space Technology and Science, 2017-i-10, June 2017, pp. 1-6.
  8. Grott, M., Knollenberg, J., and Krause, C., "Apollo Lunar Heat Flow Experiment Revisited: A Critical Reassessment of the In Situ Thermal Conductivity Determination", Journal of Geophysical Research: Planets, Vol. 115, 2010, pp. 1-11.
  9. Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams J. P., and Paige, D. A., "Lunar Equatorial Surface Temperatures and Regolith Properties from the Diviner Lunar Radiometer Experiment", Journal of Geophysical Research, Vol. 112, 2012, pp. 1-12.
  10. Hager, P. B., "Dynamic Thermal Modeling for Moving Objects on the Moon", Dissertation, Technische Universitat Munchen, Munchen, 2013, pp. 1-206.
  11. https://www.bobthealien.co.uk/moon/landingsites.htm
  12. Christie, R. J., Plachta, D. W. and Hasan, M. M., "Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage", NASA, 2007, pp. 1-19.
  13. Thermal Desktop User's Manual, Ver 5.8, C&R Technologies, Inc., Colorado, 2017.
  14. SINDA/FLUINT User's Manual, Ver 5.8, C&R Technologies, Inc., Colorado, 2015.