Browse > Article
http://dx.doi.org/10.5139/JKSAS.2018.46.4.324

Heat Flux Analysis of Lunar Lander for Potential Landing Candidate Area  

Park, Tae-Yong (Department of Aerospace Engineering, Chosun University)
Chae, Bong-Geon (Department of Aerospace Engineering, Chosun University)
Lee, Jang-Joon (Korea Aerospace Research Institute(KARI))
Kim, Jung-Hoon (Korea Aerospace Research Institute(KARI))
Oh, Hyun-Ung (Department of Aerospace Engineering, Chosun University)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.46, no.4, 2018 , pp. 324-331 More about this Journal
Abstract
The thermal environment on lunar surface is more severe than that of earth's surface or low earth orbit because of the long daytime and nighttime due to 28 days of rotation cycle of moon. Thus, analyzing heat flux on lunar lander at potential landing sites is important to determine the landing site in its initial design phase. In this study, thermal model of lunar regolith that can simulate lunar surface temperature was constructed for analyzing thermal characteristics according to the potential landing sites of lunar lander. The heat flux analyses were performed various latitudes of equator, mid-latitude, polar regions, lunar mare and highland. In addition, we also investigated the heat flux of lunar lander when it is landed on adjacent area to hill.
Keywords
Lunar Lander; Heat Flux; Thermal Control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schmitt, H., "Return to the Moon: Exploration, Enterprise and Energy in the Human Settlement of Space", Springer Science & Business Media, New York, 2007.
2 Jin, S., Arivazhagan, S., and Araki, H., "New Results and Questions of Lunar Exploration from SELENE, Chang'E-1, Chandrayaan-1 and LRO/LCROSS", Advances in Space Research, Vol. 52, 2013, pp. 285-305.   DOI
3 Burchell, M. J., Robin-Williams, R., and Foing, B. H., "The SMART-1 Lunar Impact", Icarus, Vol. 207, No. 1, 2010, pp. 28-38.   DOI
4 ZeZhou, S., Yang, J., and He, Z., "Technological Advancements and Promotion Roles of Chang'e-3 Lunar Probe Mission", Science China Technological Sciences, Vol. 56, 2013, pp. 2702-2708.   DOI
5 Tanaka, S., Mitani, T., Otake, H., Ogawa, K., Kobayashi, N., Hashimoto, T., Hoshino, T., Otsuki, M., Wakabayashi, S., Kimura, J., and Kuramoto, K., "Present Status of the Lunar Lander Project SELENE-2", 44 th Lunar and Planetary Science Conference, Vol. 44, 2013, pp. 1838.
6 Heiken, G., Vaniman, D., and French, B. M., "Lunar Sourcebook: A User's Guide to the Moon", CUP Archive, Texas, 1991.
7 Zuliani, H., Oikawa, T., and Yoshida, K., "Thermal based Path Planning using Solar Orientation for a Lunar Micro Rover", 31 th International Symposium on Space Technology and Science, 2017-i-10, June 2017, pp. 1-6.
8 Grott, M., Knollenberg, J., and Krause, C., "Apollo Lunar Heat Flow Experiment Revisited: A Critical Reassessment of the In Situ Thermal Conductivity Determination", Journal of Geophysical Research: Planets, Vol. 115, 2010, pp. 1-11.
9 Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams J. P., and Paige, D. A., "Lunar Equatorial Surface Temperatures and Regolith Properties from the Diviner Lunar Radiometer Experiment", Journal of Geophysical Research, Vol. 112, 2012, pp. 1-12.
10 Hager, P. B., "Dynamic Thermal Modeling for Moving Objects on the Moon", Dissertation, Technische Universitat Munchen, Munchen, 2013, pp. 1-206.
11 https://www.bobthealien.co.uk/moon/landingsites.htm
12 Christie, R. J., Plachta, D. W. and Hasan, M. M., "Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage", NASA, 2007, pp. 1-19.
13 Thermal Desktop User's Manual, Ver 5.8, C&R Technologies, Inc., Colorado, 2017.
14 SINDA/FLUINT User's Manual, Ver 5.8, C&R Technologies, Inc., Colorado, 2015.