• Title/Summary/Keyword: 우주발사체

Search Result 815, Processing Time 0.025 seconds

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 1: Performance Characteristics and Application of Liquid-monopropellants (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 1: 단일액체추진제의 성능특성 및 활용)

  • Kim, Jeong-Soo;Park, Jeong;Jung, Hun;Kam, Ho-Dong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.175-178
    • /
    • 2011
  • A performance characteristics and application status of liquid-monopropellants used for 3-axis control thrusters are surveyed, in this paper. Hydrogen peroxide was widely used as monopropellant until mid-1960s, but it is rapidly replaced with hydrazine which has better performance of specific impulse, storability, and so on. Hydrazine is mostly employed as a liquid-monopropellant of satellite, interplanetary spacecraft, and space launch vehicle owing to its moderate performance features.

  • PDF

Development of Technological Equipment Power Supply System in KSLV-II Launch Complex (한국형발사체 발사대시스템 지상장비전원공급계 개발)

  • Moon, Kyungrok;An, Jaechel;Jung, Ilhyung;Hong, IIhee;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.36-40
    • /
    • 2017
  • The launch operation for a space launch vehicle(SLV) is to be conducted by the systematic operation between SLV and the Technological Equipment(TE) such as the mechanical, fuel, and electrical ground support equipment at launch complex(LC). The basic source for the operation of the instruments in LC is the electrical power supply system, Technological Equipment Power Supply System(TEPSS), which is one of the Launch Control System. Thus TEPSS should supply the required electrical power to TE with reliability. In this paper, TEPSS which supplies operational electrical power to TE is introduced.

  • PDF

대형 통신위성의 우주환경 지상검증을 위한 제어시스템 설계

  • 서희준;조혁진;이상훈;문귀원;최석원
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.76-76
    • /
    • 2004
  • 점차 정밀화 및 대형화되고 있는 통신위성의 운영 우주환경은 고진공 환경이며 태양 복사열에 의한 고온 환경 및 극저온이 반복되는 가혹한 환경으로 특징지어진다. 위성체는 지상에서 발사되어 우주궤도에 진입한 순간부터는 계속해서 우주환경에 노출되며 이러한 가혹한 우주환경에 의해서 위성체의 주요부품에 기능장애가 초래되기도 하고 이는 결국 임무의 실패로 이어지도 한다. 위와 같은 이유들로 인하여 위성체는 지상에서 우주환경 시험을 거쳐 기능 및 작동상태를 점검해야 하며, 이를 위해서는 우주환경을 모사 할 수 있는 우주환경 모사장비가 필요하다. (중략)

  • PDF

공중발사형 3단 로켓 개발에 관한 연구

  • 이재우;황진용;변영환;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.12-12
    • /
    • 2000
  • 우리 나라는 일본상공의 비행을 피하기 위하여 제주도와 남해안 근해로 발사장 선정이 국한되는 지정학적인 위치로 볼 때 발사장 선택에 제한이 없는 공중발사에 대한 가능성 연구가 필요한 시점에 있다. 본 연구는 우리 나라와 같은 분단 된 특수상황 그리고 지정학적 위치에서의 발사장을 고려한 우주 발사체 개발의 필요성에 따라 F-4에 장착 가능한 3단형 공중발사 로켓을 설계하고 1/3의 축소 모형을 제작하였다. 2kg의 payload를 갖는 발사체의 1단은 LRM ( Lox/kerosene )을 사용하였고 2, 3단은 SRM ( HTPB/AP/Al )을 사용하였으며 발사고도는 11-l2km 상공에서 F-4에 의해서 발사되고 31km지점에서 1단 분리가 이루어지며 62km지점에서 2단 분리와 nose fairing을 분리하게 된다. 전장은 6.85m 이며 전체 무게는 560.6kg 이고 전체 발사체 시스템의 CAD 도면은 아래 그림 1과 같이 주어져 있다. 그림 2에서는 F-4E phantom의 장착성을 검토해 본 결과 장착이 가능함을 알 수 있었으며 추진제 양의 감소로 크기를 대폭 줄일 수 있었다.

  • PDF

A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles (축대칭 발사체의 감쇠계수 계산을 위한 정상 해법)

  • Park, Soo-Hyung;Kwon, Jang-Hyuk;Yu, Yung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.1-8
    • /
    • 2006
  • A steady prediction method is presented to compute dynamic damping coefficients for axisymmetric projectiles. Viscous flow analysis is essential to the steady method using a zero-spin coning motion in the inertial coordinate frame. The present method is applied to compute the pitching moment and the pitch-damping moment coefficients for the Army-Navy Spinning Rocket. The results are in good agreement with the parabolized Navier-Stokes data, range data, and unsteady prediction data. Predictions for Secant-Ogive-Cylinder configurations are performed to investigate effects of afterbody geometries. To investigate the geometrical effect and flow physics, the longitudinal developments of the coefficients are examined in detail.

Performance Analysis of a Flat-Earth Explicit Guidance Algorithm Applicable for Upper Stages of Space Launch Vehicles (발사체 상단 유도를 위한 단순화된 직접식 유도 방식 성능 분석)

  • Song, Eun-Jung;Cho, Sang-Bum;Park, Chang-Su;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.169-177
    • /
    • 2012
  • This paper considers the explicit guidance algorithm to determine the closed-loop guidance law applicable to upper stages of a given space launch vehicle. It has the advantage of very simple forms derived from the flat earth assumption, which is appropriate for its on-board application. However the simple time-to-go prediction equation produces the degraded guidance performance of the launcher because of its inaccuracy. To overcome the problem, the elaborate prediction equations, which have been employed in Saturn and H-II, are attempted here. Finally, the simulation results show that the simple guidance approach requires the more accurate time-to-go prediction and gravity integrals for its broad application.

Study of an Explicit Guidance Algorithm Applicable for Upper Stages of Space Launch Vehicles (발사체 상단의 외연적 유도 알고리듬 적용 연구)

  • Song, Eun-Jung;Cho, Sang-Bum;Park, Chang-Su;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • This paper considers improved IGM (Iterative Guidance Mode), one of the explicit guidance algorithms, to determine the guidance algorithm for upper stages of a space launch vehicle. IGM, which has been employed successfully for the Saturn to put its payload into the parking orbit and lunar transfer orbit, is applied here for guidance of the launcher during the second and third stages. The orbit injection accuracy is evaluated through the 3-DOF computer simulations and an accurate prediction method, which can eliminate the prediction error of the downrange position at the orbit injection, is also proposed here.

The analysis of E-field produced by satellite S-band under fairing of launcher (인공위성 S-band가 형성한 발사체 패어링내의 전기장 해석)

  • Kim, Eui-Chan;Lee, Sang-Kon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.82-86
    • /
    • 2011
  • This paper presents an RF Electric field assessment at 2.290 [GHz] inside launcher PROTON M/Breeze M long fairings, produced by COMS TM. COMS intentional RE due to TM ON under fairing has been assessed considering PROTON M / BREEZE M fairing characteristics. As fairings of all launchers present similar sizes, a similar E-field level under fairing is expected for the other launchers. As a result, the RE level under faring is compliant with COMS RS limits, but is not compliant with RS requirements of the launcher PROTON M/Breeze M.

Development of Lithium-Ion based Onboard Battery for Space Launch Vehicle (우주발사체 탑재용 리튬이온 배터리 개발)

  • Kim, Myung-Hwan;Ma, Keun-Su;Lim, You-Chol;Lee, Jae-Deuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.363-368
    • /
    • 2007
  • Lithium-ion batteries providing high gravimetric energy density are rapidly replacing Ni-Cd and Ni-H2 in aerospace applications. The main advantage is the weight reduction of the battery system. Weight is a major concern in aerospace applications. Also, lithium-ion offer low thermal dissipation, high energy efficiency, and low cell cost. The Onboard battery module for KSLV-I(Korea Space Launch Vehicle) contains 80 Sony US18650 cells configured as 10 strings in parallel, with each string containing 8 series connected cells. This allows to meet voltage and capacity requirements specified for the mission. In this paper design description and specifications of lithium-ion battery developed are presented. Qualification test flow is also shown to make sure the performance in the predicted space environment. Electrical performance was simulated by dedicated program, and verified with electronic load. Lastly, the capacity was proven on real equipment load assembly.

Prediction of Preliminary Pogo Instability on a Space Launch Vehicle (예비설계 단계 우주발사체의 공급/추진계 모델을 이용한 포고 불안정성 예측)

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Seo, Yongjun;Ann, Sungjun;Song, Huiseong;Kim, Youdan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-72
    • /
    • 2017
  • The longitudinal dynamic instability which can occur in the fueling process of a space launch vehicle is called pogo. It is caused by coupling between the fuselage and propulsion system and they would be formed as a closed-loop system. so that the amplitude of the response may increase or decrease. In this paper, a mathematical model which is applicable to the systematic pogo analysis of a general launch vehicle is developed for an example of space shuttle. The formulations are composed of the linearized second-order differential equation for the propulsion system, and of the pressure, weight displacement, and generalized displacement. Those are important parameters for pogo analysis, are derived through eigenvalue analysis. By the formulation suggested in this paper, it is expected that mathematical modeling method of the pogo system can be obtained and systematic pogo stability analysis for any launch vehicle will be enabled.