• Title/Summary/Keyword: 우주발사체(space launch vehicle)

Search Result 292, Processing Time 0.029 seconds

A Study On The Configuration Of UHD High Speed Digital Camera System In the Naro Space Center (나로우주센터 초고화질(UHD) 고속 디지털카메라 시스템에 대한 구성방안 연구)

  • Park, Doo-Jin;Noh, Young-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.536-538
    • /
    • 2017
  • UHD high speed digital camera system will be installed around launch pad and launch complex tower to acquire high speed image for motion analysis of integral parts of launch vehicle during the lift-off of KSLV-II in the Naro space center. In this paper, We compared configuration of high speed digital camera system operating in the Naro space center with UHD high speed digital camera system for mission of KSLV-II.

  • PDF

A Study on Establishing the Requirements Verification Matrix (RVM) for the Space Launch Vehicle (우주발사체 요구조건 검증 매트릭스(RVM) 수립 연구)

  • Jang, Junyouk;Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2018
  • The intended system's function and performance can be assured through implementing the development process, the verification compliance against corresponding requirements, in accordance with the fundamental principle from the Systems Engineering. For the effective verification implementation, related core metadata should be selected and managed throughout the development life cycle. And these have to be included in the configuration document such as specification so that taking them as development baselines each phases if necessary. In this paper, associated case study results are introduced to establish the Requirements Verification Matrix (RVM) for the verification management on the space launch vehicle development program.

Trend Analysis in Upper Stage Engine Development of Space Launch Vehicles (우주발사체의 상단 엔진 개발 동향 분석)

  • Han, Kyunghwan;Rho, Tae-Seong;Huh, Hwanil;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.79-95
    • /
    • 2022
  • Since space exploration began in the 1950s, numerous upper stage engines have been developed and used based on various design concepts. In this paper, information of upper stage engines which developed or developing is analysed and their characteristics and performance are summarized. These days, there are many cases of commercial heavy launch vehicles applying upper stage engines using liquid hydrogen with expander cycle which launched recently. Engines operating by Kerosene seem to be close to its theoretical maximum performance based on past experiences. Meanwhile, engines using methane propellant, which has recently become an issue, are also undergoing many developments because of various advantages. Recently, private companies are actively participating in launch vehicle market, and there are many cases in which the government and companies jointly research of next-generation engine.

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area (초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석)

  • Shin, Ho-Cheol;Park, Soo-Hyung;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.367-375
    • /
    • 2017
  • RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV (정지궤도위성용 한국형 우주발사체를 위한 고성능 상단 엔진 개발 현황 및 계획)

  • Yu, Byungil;Lee, Kwang-Jin;Woo, Seongphil;Im, Ji-Hyuk;So, Younseok;Jeon, Junsu;Lee, Jungho;Seo, Daeban;Han, Yeoungmin;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • The technology development of a high performance upper stage engine for a GEO(GEostationary Orbit) KSLV(Korea Space Launch Vehicle) is undergoing in Korea Aerospace Research Institute. KSLV is composed of an open cycle engine with gas generator, which is for a low orbit launch vehicle. However the future GEO launch vehicle requires a high performance upper stage engine with a high specific impulse. The staged combustion cycle engine is necessary for this mission. In this paper, current progress and future plan for staged combustion cycle engine development is described.

Planning of Integrated Test for Propulsion System of Space Launch Vehicle (우주 발사체 추진기관 종합 시험 계획 수립)

  • Cho, Sang-Yeon;Kim, Sang-Heon;Bershadesky, V.;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.89-95
    • /
    • 2011
  • Korea Space Launch Vehicle II (KSLV-II) planned to launch in 2021 is 3 stage rocket which can inject 1.5 ton satellite in low earth orbit. KSLV-II will adapt the newly developed liquid rocket engines for its propulsion system of each stage. For the evaluation of development level for rocket engine, integrated system test performed in appropriate facility is needed. In this study, test article and major parameters for certifying the propulsion system of KSLV-II were reviewed and optimum test cycle and test duration for satisfying system reliability requirement were illustrated.

Analysis of NASA Student Launch as a NASA Managed University Rocket Competition (미국 NASA 주관 대학생 로켓 경진대회 : NASA Student Launch 사례 분석)

  • Lee, Hoon-Hee;Yoon, Yong-Sik;Min, Kyung-Ju
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.129-141
    • /
    • 2014
  • Since 2006, an annual rocket competition for university students in America has been held by management of NASA to support the Space Launch System. This paper describes the significance and operational aspects of NASA Student Launch, a rocket competition for university students organized by NASA Marshall Center's Academic Affairs Office, to inspire students to pursue education and careers in science, technology, engineering, or mathematics (STEM) fields, which is Furthermore, It describes briefly activities of Korean national rocket competition for university students.

Flight trajectory generation through post-processing of launch vehicle tracking data (발사체 추적자료 후처리를 통한 비행궤적 생성)

  • Yun, Sek-Young;Lyou, Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.53-61
    • /
    • 2014
  • For monitoring the flight trajectory and the status of a launch vehicle, the mission control system in NARO space center process data acquired from the ground tracking system, which consists of two tracking radars, four telemetry stations, and one electro-optical tracking system. Each tracking unit exhibits its own tracking error mainly due to multi-path, clutter and radio refraction, and by utilizing only one among transmitted informations, it is not possible to determine the actual vehicle trajectory. This paper presents a way of generating flight trajectory via post-processing the data received from the ground tracking system. The post-processing algorithm is divided into two parts: compensation for atmosphere radio refraction and multi-sensor fusion, for which a decentralized Kalman filter was adopted and implemented based on constant acceleration model. Applications of the present scheme to real data resulted in the flight trajectory where the tracking errors were minimized than done by any one sensor.

Optimal Design to Improve Launch Velocity of Coilgun Launching System (코일건 발사 시스템의 발사속도 향상을 위한 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2018
  • Research on space development and satellites is being actively pursued. An interesting field is the study of reliable low-cost space launch vehicles. Since chemical fuel-based launching systems are expensive and take a lot of time and cost to maintain, the EML system, which is an electromagnetic force launching apparatus, is attracting attention. The EML system converts electrical energy stored in a capacitor into magnetic energy, and converts magnetic energy into mechanical kinetic energy, thereby accelerating the projectile. Although studies are actively conducted in the field, it is difficult to solve the equation because the impedance and speedance change with time and the nonlinearity is strong. Many researchers have solved this equation in a variety of methods. In this paper, the velocity analysis of the projectile was carried out by FEM (finite element method) using the commercial electromagnetic analysis program MAXWELL.