Journal of the Korean Data and Information Science Society
/
v.25
no.1
/
pp.169-176
/
2014
Counting processes are widely used in many fields, whose properties are determined by the intensity function. For estimation of the parameters of the intensity functions when the process is observed continuously over a fixed interval, the likelihood function is of interest. However in the literature there are only heuristic derivations and some results are not coincident. We thus in this note derive the likelihood function of the counting process in a rigorous way. So this note fill up a hole in derivation of the likelihood function.
Proceedings of the Korean Statistical Society Conference
/
2000.11a
/
pp.261-266
/
2000
이변량 반복측정자료에서 Chinchilli 등(1996)이 제안한 가중일치상관계수는 두 변수의 일치성을 나타내는 측도이다. 기존에 제안된 가중일치상관계수 추정법은 변동효과 및 측정오차의 분산성분을 각각 최소제곱법으로 비편향 추정하여 구하는 것이다. 본 연구에서는 반복측정자료의 주변 우도함수를 설정한 후, 우도함수에 기초한 분산성분을 구하여 가중일치상관계수를 추정하는 방법을 제안한다. 이때, 각 분산성분은 유사/의사 우도함수 및 사후 분포에서 반복시행을 통하여 구해진다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2002.05a
/
pp.579-584
/
2002
시스템의 신뢰도는 설계 단계에서부터 중요한 제약 조건이 됨과 동시에 그 사용 단계에서도 지속적인 관찰의 대상이 된다. 특히 원자력 발전소와 길이 안전성이 강조되는 시스템에서 는 한 번의고장으로 치명적인 문제를 야기 시킬 수 있다. 따라서, 신뢰도가 높은 시스템을 구축하기 위한 방안과 함께 시스템의 신뢰도에 대한 수리적인 평가를 보다 합리적인 방법으로 할 수 있는 것에 관한 연구가 필요하다고 할 수 있다. 시스템의 신뢰도 평가는 고장를 분포 함수의 추정에서 출발한다. 시스템의 고장를 분포 함수 추정시, 고장 자료를 이용하여 분포 함수의 모수를 추정하지만 대상 시스템의 고장 자료가 없는 경우 다른 유사 시스템의 고장자료를 이용하여 고장률 분포 함수를 추정하게 된다. 기준의 연구들은 유사 시스템의 고장자료를 이용할 때 베이지안(Bayesian)분석 절차를 이용하였다. 하지만 기존 방법들은 추정 절차에 필요한 우도함수(likelihood function)를 유도시 계산상의 어려움이 많다. 본 연 구에서는 각각의 개발 자료에 대한 우도함수를 유도하여 전체적인 시스템의 우도함수를 유도함으로써 이러한 문제점을 해결할 수 있는 새로운 절차를 제안하였다. 또한 모의실험을 통하여 기존의 방법과의 비교함으로써 본 연구의 타당성을 검증하였다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.303-303
/
2018
안정적인 수자원 운용을 위해서는 정확한 유량예측 기술이 필요하다. 본 연구에서는 유량예측 정확도의 개선을 위해 베이지안 추론(Bayesian inference) 기법과 앙상블 유량 예측(Ensemble Streamflow Prediction, ESP) 기법의 결합을 통한 새로운 유량예측 기법(Bayesian ESP)을 제안하였다. ESP를 통한 유량 예보 앙상블은 베이지안 추론의 사전정보로 활용되며, 관측 유량과 ESP 전망 결과의 선형관계를 통해 우도함수가 추정된다. 우도함수는 관측 유량이 존재하는 과거 기간에 대한 ESP를 수행한 후 예보 시점의 관측 유량(concurrent observed flow)과 선행 관측 유량(lagged observed flow)과의 다중선형회귀 모형을 통해 추정된다. 사전정보와 우도함수는 정규분포로 가정되며, 따라서 최종 유량예측인 사후정보 역시 정규분포함수로 산정되게 된다. Bayesian ESP은 ESP에서 발생하는 강우-유출모형 오차의 개선을 통해 수문예측의 정확도를 개선하게 되며 정규분포함수로 최종 결과가 산정되므로 확률예보 형태의 수문 전망도 가능하다. 본 기법을 전국 35개 댐 유역에 시범적용을 한 결과, 모든 유역에서 기존 ESP 기법 대비 수문예측 정확도의 개선을 가져왔으며, 우도함수 추정에 있어 선행 유량의 포함 여부가 수문 예측 정확도의 추가적인 개선을 가져왔다. 본 기법은 주간 예보부터 계절 예보까지 탄력적으로 구축이 가능하며 적용 결과 리드 타임이 길어질수록 예측 능력이 감소되었지만 전체 구간에 있어서 Bayesian ESP 기법이 가장 우수한 예측 정확도를 보여주었다.
Most of the previously proposed methods for the frailty model do not work well when there are many tied observations. This is partly because the empirical likelihood used is not suitable for tied observations. In this paper, we propose a new method for the frailty model with many ties. The proposed method obtains the posterior distribution of the parameters using the binomial form empirical likelihood and Bayesian bootstrap. The proposed method yields stable results and is computationally fast. To compare the proposed method with the maximum marginal likelihood approach, we do simulations.
Journal of the Korean Data and Information Science Society
/
v.27
no.5
/
pp.1119-1131
/
2016
The Neyman-Scott Rectangular Pulses Model (NSRPM) is mainly used to construct hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena, such as the arrival of storms or rain cells. In NSRPM, the method of moments has often been used because it is difficult to know the distribution of rainfall intensity. Recently, approximated likelihood function for NSRPM has been introduced. In this paper, we propose a hierarchical model for applying a spatial structure to the NSRPM parameters using the approximated likelihood function. The proposed method is applied to summer hourly precipitation data observed at 59 weather stations (Korea Meteorological Administration) from 1973 to 2011.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1770-1773
/
2008
수위-유량 관계 곡선식에 포함되어져 있는 매개변수를 추정하기 위해 많이 사용되는 로그선형 회귀분석은 잔차의 비등분산성(heterocesdascity)을 고려하지 못하므로 본 연구에서는 의사우도추정법(Pseudo-likelihood Estimation, P-LE)에 의해 분산함수를 추정하고 이와 함께 회귀계수를 추정할 수 있는 방법을 제시하였다. 이 과정에서 제시된 회귀잔차를 최소화하기 위하여 SA(simulated annealing)이라는 전역 최적화 알고리즘을 적용하였다. 또한 수위-유량 관계 곡선식은 단면 등의 영향으로 인해 구간에 따라 각각 다르게 구축되어져야 하므로 이를 보다 객관적으로 판단하고 분리 위치를 정확히 추정하기 위하여 Heaviside 함수를 의사우도함수에 포함시켜 결과를 추정하도록 하였으며, 2개의 구간을 가지는 유량자료를 이용하여 제시된 방법의 합리성을 통계적으로 실험하였다. 이와 같이 통계적 실험을 통해 제시된 방법들이 기존 방법과 비교하여 가질 수 있는 장점을 파악하였으며, 제시된 방법들을 금강유역 5개 지점에서 대해 수행하여 효율성을 검증하였다.
The Neyman-Scott Rectangular Pulse (NSRP) model is used to model the hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena such as the arrival of a storm or rain cells. In this paper, we proposed approximated likelihood function for the NSRP model and applied the proposed method to precipitation data in Seoul.
Na, Wooyoung;Jeong, Jinung;Kim, So Eun;Yoo, Chulsang
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.109-109
/
2020
본 연구에서는 댐 운영 전과 후의 유출 특성 변화를 평가하는 데 베이지안 기법을 이용하였다. ROM과 같은 댐 운영은 자연유량(유입량)에 대해 주어진 방법을 적용하여 수행하는 일종의 조정(수정) 과정이다. 이 과정은 무작위 변량에 해당하는 유입량을 대상으로 하며, 그 과정의 결과로 역시 유출량이라는 무작위 변량이 생성된다. 기 확정된 또는 고정된 조정(수정) 과정은 일정한 함수로 표현 가능하다. 결과적으로 이 과정은 사전확률에 우도함수를 적용하여 사후확률을 유도하는 것과 같다. 즉, 베이지안 기법의 적용과정과 다르지 않다. ROM으로는 일정률, 일정량, 일정률-일정량 ROM(Rigid ROM) 세 가지를 고려하였다. 각 ROM별 방류 특성을 고려하여 우도함수를 결정하면, 베이지안 기법을 적용하여 사후분포, 즉, 방률량의 분포함수를 유도할 수 있다. 베이지안 기법을 적용하여 유도된 결과는 ROM을 적용하여 직접 모의한 결과와 비교함으로써 검증된다. 본 연구에서는 대상 댐으로 안동댐을 선정하였으며, 안동댐에서 관측된 2010년부터 2019년까지의 10년치 유입량 자료를 이용하였다. 즉, 2010년부터 2019년까지의 안동댐 유입량 자료는 댐 운영 이전의 유출특성을 대변하고, 모의된 유출량은 댐 운영 이후의 유출특성을 대변한다.
Proceedings of the Korean Reliability Society Conference
/
2000.11a
/
pp.315-320
/
2000
본 연구에서는 수리 가능한 시스템에서 고장 강도와 수리 효과에 대한 모수 추정 문제를 다룬다. 시스템이 노후화로 인한 고장이 발생할 경우 최소수리가 행해지고 계획된 예방정비에서는 비례적 수명 감소가 이루어지는 수명 데이터에 대해서 고장 강도 함수의 모수와 정비의 수리효과를 추정하기 위해서 최대 우도 함수 방법을 이용한다. 또한 유전자 알고리즘을 이용해서 우도 함수를 최대화시키는 절차를 개발하고 수치 예제를 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.