• Title/Summary/Keyword: 용출수

Search Result 1,262, Processing Time 0.027 seconds

Experimental Study on the Properties of Surface Treatment Fly Ash Using Arc Discharge (아크방전을 이용한 표면개질 플라이애시의 특성에 관한 실험적 연구)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Fly ash is a material used as a concrete admixture. When fly ash is used for concrete manufacturing, it is expected to improve the performance such as reduction of cement usage and increase of chemical resistance. However, fly ash have some problems such as unburned carbon content and amorphous film on the surface of fly ash particles. When concrete is manufactured using fly ash containing a large amount of unburned carbon, there is a problem that the slump is lowered due to adsorption of AE agent. In addition, the amorphous film on the surface of the particles prevents the reactive substances from leaching out of the fly ash. Therefore, a method of surface treatment of fly ash using plasma has been studied to remove such unburned carbon and amorphous films. However, plasma has the problem that $O_3$ is generated when $O_2$ is used as an active gas. $O_3$ is a harmful substance and adversely affects the health of the experimenter. In this study, the surface of fly ash was treatment by arc discharge. Experimental results show that the unburned carbon is removed when the surface of fly ash is treatment by arc discharge and the amorphous film was broken and the reactivity was improved. Therefore, it is considered that arc discharge can treatment the surface of fly ash and improve the quality of fly ash.

Quality Properties of Herbal Wine containing Schizandra chinensis and Lycium chinense according to Extract Concentration (추출농도에 따른 오미자 및 구기자를 첨가한 한방약술의 품질특성)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.341-347
    • /
    • 2019
  • In this study, the following is the result of measuring the quality characteristics of herbal wine and the active inhibition of Glutathione S-transferase in order to measure the release of physiological active substances according to the concentration of extracts. The pH level of herbal wine was 4.4, up from 3.9 before fermentation. These changes are attributed to fermentation and organic acids during alcoholic fermentation. The acidity of herbal wine was 0.55%, about six times higher than the pre-fermentation control of 0.09%. These results show that organic acids are used for flavor formation, ether, in combination with alcohol. The inhibitory activity of glutathione S-transferase were $5.1{\pm}0.31$ in herbal wine 15%, $6.5{\pm}0.6$ in herbal wine 20%, $7.6{\pm}0.6$ in herbal wine 25%, $8.4{\pm}0.2$ in herbal wine 30% and $9.7{\pm}0.7$ in herbal wine 35%. As the extract concentration was increased the inhibitory activity of glutathione S-transferase were significantly increased (<0.05).

Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets (광산슬러지 펠렛을 이용한 폐석탄광 주변 토양 내 비소 안정화 연구)

  • Ko, Myoung-Soo;Ji, Won-Hyun;Kim, Young-Gwang;Park, Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The purpose of this study was to assess the applicability of acid mine drainage sludge (AMDS) pellets for the arsenic (As) stabilization and to suggest an evaluation method for arsenic stabilization efficiency in soil around abandoned coal mines. The soil samples were collected from the agricultural field around Ham-Tae, Dong-Won, Dong-Hae, and Ok-Dong coal mine. The As concentration in soil was exceeding the criteria of soil pollution level, except for Ham-Tae coal mine. The AMDS pellets are more appropriate to use by reducing dust occurrence during the transport and application process than AMDS powder. In addition, AMDS pellets were maintained the As stabilization efficiency. The application of AMDS pellets for the As stabilization in soil was assessed by column experiments. The AMDS pellets were more effective than limestone and steel slag, which used as the conventional additives for the stabilization process. The As extraction by $0.43M\;HNO_3$ or $1M\;NaH_2PO_4$ solution were appropriate evaluation methods for evaluation of As stabilization efficiency in the soil.

Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling (건설폐토석의 성토에 따른 지반환경적 영향)

  • Shin, Eun-Chul;Kang, Jeong-Ku;Ahn, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.21-30
    • /
    • 2011
  • The recycled soil that is proceeded from demolition concrete structures was analyzed by the methods of the physical and mechanical tests of soil and TCLP test to use the soil in low landfilling for the construction of an industrial complex. The laboratory test for diffusion of alkali ion in soil mass was analyzed by the methods of XRF and ICP. The fish toxicity test was also conducted to find an environmental influence. The recycled soil through the laboratory test satisfied the engineering property for low landfilling and the criteria of soil contamination. However, the solution which producted by 1:1 ratio of recycled soil and water contained the high pH concentration by alkali ion. The calcium hydroxide solution by CSH cement paste was estimated as the main reason why pH concentration is increased more than 9.0. The high pH concentration in recycled soils causes a toxicity to the livability of fishes. A diffusion area of pH concentration in the ground was analyzed by the Visual Modflow Ver. 2009 program based on geotechnical investigation. The high pH concentration in the recycled soils can be remained as high value due to cement paste in the long term period. Therefore, in the early stage of landfilling work, the mixing with the weathered granite soil is necessary to control the pH concentration.

Anti-cancer and Anti-microbial Effect of the Fraction Isolated from Pyrus ussuriensis Leaves (산돌배나무(Pyrus ussuriensis) 잎 분획물의 항암 및 항균활성에 관한 연구)

  • Lee, Chang-Eon;Kim, Young-Hun;Lee, Byung-Guen;Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.136-141
    • /
    • 2011
  • This study was conducted to confirm the application as ingredients of cosmetics through an examination of the function for anti-cancer and anti-microbial of the fraction isolated from Pyrus ussuriensis leaves. The dried leaf of P. ussuriensis were extracted with acetone-$H_{2}O$ (6:4, v/v), concentrated and fractionated with the upper layer of acetone on a separatory funnel. Each fraction was freeze dried, then a portion of acetone soluble powder was chromatographed on a Sephadex LH-20 column using a series of aqueous methanol as eluents and also used the MIC-gel using a series of aqueous methanol as developing solvent. The isolated compounds were identified by silica-gel TLC. The growth inhibition activity was measured using the MTT assay by the mouse meltioma (B16F10) cell. The cancer cell growth inhibition rate of fractions isolated from P. ussuriensis leaf was 80%. In anti-microbial activity test, the fraction of P. ussuriensis with 0.25 mg/disc resulted in the clear zone of 1.3 cm and 2 cm for Staphylococcus aureus and S. epidermidis of gram positive bacillus, respectively. In Escherichia coli of gram negative bacillus, the fraction with 0.5 mg/disc resulted in the clear zone of 1.1 cm~1.5 cm each fraction. From these results, we confirmed that acetate fraction of P. ussuriensis has a great potential as a natural ingredients with a anti-cancer and anti-microbial source.

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash (석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구)

  • Kim, Heontae;Woo, Hee-Eun;Kim, Jong-Oh;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.492-499
    • /
    • 2021
  • In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

Improvement of Sewage Sludge Dewaterability using Fe(II)/Na2S2O8 (Fe(II)/Na2S2O8을 이용한 하수슬러지 탈수능 개선)

  • Han, Jun-Hyuk;Nam, Se-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.23-28
    • /
    • 2022
  • In order to investigate the degree of sewage sludge dewaterability using Fe(II)/Na2S2O8, STTF, SCST, water content, TS, VS, TB-EPS as carbohydrate and Protein were measured. The dosage of Na2S2O8 was varied from 0.4 to 0.7 mmol/gVS and molar ratio of Fe(II)/Na2S2O8 was varied from 0.5 to 0.7 mol/mol. According to the increase of the dosage of Na2S2O8 and Fe(II)/Na2S2O8 molar ratio, STTF and SCST increased from 1.00 to 15.00 and 4.51, respectively. Water content decreased to 82.6%. TB-EPS as carbohydrate and protein decreasing rate also increased to 37.16% and 57.34%, respectively. Especially, Na2S2O8 0.6 mmol/gVS and Fe(II)/Na2S2O8 0.6 mol/mol condition, water content dercreased to 83.1%, STTF and SCST increased to 13.64 and 4.19 which showed the cost effective improvement of dewaterability. It is considered that SO4- radical generated by Fe(II)/Na2S2O8 degraded EPS and converted bound water to free water.

Cold Tolerance and Physiological Response of Camellia sinensis Cultivars by Low-Temperature Treatment (저온처리에 의한 국내 품종 차나무 저온 내성 및 생리적 반응)

  • Im, Hyeon Jeong;Yong, Seong Hyeon;Choi, Myung Suk;Kim, Sang Geun;Kim, Yang Soo;Yi, Jae Sun;Song, Ki Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.251-262
    • /
    • 2022
  • We selected a cold-tolerant tea tree (Camellia sinensis L.) through reliable evaluation using a number of cold-tolerance indicators targeting tea tree cultivars such as "Chamnok," "Bohyang," "Sangnok," and "Myungnok" in response to climate change. We conducted a low-temperature damage investigation, "Chamnok" and "Bohyang" were damaged investigated with small amounts of green and bright green. "Sangnok" and "Myungnok" were damaged investigated red and dark red at -10℃. The extent of electrolyte leakage increased as the treatment temperature decreased in all cultivars. We predicted lethal temperatures through non-linear regression analysis, finding relatively higher tolerance to low temperature in "Chamnok" (-9.344℃) and "Bohyang" (- 8.883℃) than that in "Myungnok" (-8.092 ℃) and"Sangnok" (-7.632℃). "Bohyang" showed higher levels of antioxidant activity compared to other cultivars. The lipid peroxidation reaction revealed that "Sangnok" and "Myungnok" had higher MDA content than that of other cultivars when treated at low temperatures. Consequently, predictions of the lethal temperature through non-linear regression analysis of "Chamnok" and "Bohyang" were consistent with their tolerance to low-temperature damage, and antioxidant activity and lipid peroxidation reactions were likewise consistent. The results of this study can be used not only for evaluation and selection of cold-tolerance of tea trees in response to climate change, but also in the cultivation of cold-tolerant plants.

A Study on the Hydraulic Stability of a Multi-Layered Porous Riverbank Revetment Using Castor Oil-Based Biopolymer (피마자유기반 바이오폴리머를 활용한 다층다공성 호안의 수리적 안정성 검토)

  • Sang-Hoon, Lee;Joongu, Kang;Hong-Kyu, Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.228-236
    • /
    • 2022
  • Riverbank revetments are installed to increase the stability, while preventing scouring, and utilize the rivers; their construction is prioritized to secure dimensional safety that can withstand flooding. Existing revetment technologies employ use of rocks, gabions, and concrete. However, stone and gabions are easily erosion and destroyed by extensive flooding. Though the materials used in concrete technology possess strength and stability, the strong base adversely affects the aquatic ecosystem as components leach and remain in water for a long time. This serves as an environmental and ecological issue as vegetation does not grow on the concrete surface. This study introduces multi-layer porous riverbank revetment technology using biopolymer materials extracted from castor oil. Results obtained from this study suggest that this technology provides greater dimensional stability as compared to existing technologies. Moreover. it does not release toxic substances into the rivers. Multiple experiments conducted to review the application of this technology to diverse river environments confirm that stability is achieved at a flow velocity of 8.0 m/s and maximum tractive force of 67.25 kgf/m2 (659.05 N/m2).