Fe(II)/Na₂S₂O₈을 이용한 하수슬러지 탈수능 개선

한준혁®, 남세용바

Improvement of Sewage Sludge Dewaterability using Fe(II)/Na₂S₂O₈

Jun-Hyuk Hana, Se-Yong Nambt

(Received: Aug. 31, 2022 / Revised: Sep. 20, 2022 / Accepted: Sep. 23, 2022)

ABSTRACT: In order to investigate the degree of sewage sludge dewaterability using Fe(II)/Na₂S₂O₈, STTF, SCST, water content, TS, VS, TB-EPS as carbohydrate and Protein were measured. The dosage of Na₂S₂O₈ was varied from 0.4 to 0.7 mmol/gVS and molar ratio of Fe(II)/Na₂S₂O₈ was varied from 0.5 to 0.7 mol/mol. According to the increase of the dosage of Na₂S₂O₈ and Fe(II)/Na₂S₂O₈ molar ratio, STTF and SCST increased from 1.00 to 15.00 and 4.51, respectively. Water content decreased to 82.6%. TB-EPS as carbohydrate and protein decreasing rate also increased to 37.16% and 57.34%, respectively. Especially, Na₂S₂O₈ 0.6 mmol/gVS and Fe(II)/Na₂S₂O₈ 0.6 mol/mol condition, water content decreased to 83.1%, STTF and SCST increased to 13.64 and 4.19 which showed the cost effective improvement of dewaterability. It is considered that SO₄⁻¹ radical generated by Fe(II)/Na₂S₂O₈ degraded EPS and converted bound water to free water.

Keywords: Fe(II), Sodium persulfate, Sewage sludge, Extracellular polymeric substances

초록 Fe(II)/Na₂S₂O₈을 이용하여 하수슬러지의 탈수능 개선 여부를 확인하고자 약품 주입량에 따른 탈수능을 비교하였다. 탈수능의 주요 지표로 STTF, SCST, 함수율, TS, VS를 분석하였으며 TB-EPS as carbohydrate 및 protein을 측정하여 EPS의 파쇄여부를 확인하였다. 실험한 Na₂S₂O₈ 농도 범위는 0.4~0.7 mmol.gVS였고, Fe(II)/Na₂S₂O₈ 몰비 범위는 0.5~0.7 mol/mol이었다. 실험결과, Fe(II)/Na₂S₂O₈의 농도 및 몰비가 증가함에 따라 STTF는 초기 1.00에서 15.00까지 증가하였고, SCST는 1.00에서 4.51까지 증가하였다. 함수율은 82.6%까지 감소하였다. TB-EPS as carbohydrate 및 protein의 감소율은 각각 37.16% 및 57.34%까지 증가하였다. Na₂S₂O₈ 0.6 mmol/gVS, Fe(II)/Na₂S₂O₈ 0.6 mol/mol 조건에서 STTF, SCST 및 함수율은 각각 13.64, 4.19 및 83.1%로 주입량 대비 탈수능 개선효과가 높게 나타났다. 이는 Fe(II)에 의해 생성된 SO₄ 라디칼이 EPS를 파쇄하여 EPS와의 결합된 수분과 세포수를 수용액으로 용출시켜 탈수능이 개선된 것으로 사료된다.

주제어: 철염, 과황산나트륨, 하수슬러지, 체외고분자물질

a 국립한경대학교 건설환경공학부 석사과정(Master Student, School of Civil & Environmental Engineering, Hankyong National University)

b 국립한경대학교 건설환경공학부 교수(Professor, School of Civil & Environmental Engineering, Hankyong National University)

[†] Corresponding author(e-mail: namsy@hknu.ac.kr)

1. 서 론

국내 공공하수처리시설에서 2020년 기준 11,535 m³/d 의 하수슬러지가 발생하였으며 매년 증가하는 경향을 나타내고 있다¹⁾. 하수슬러지는 일반적으로 탈수 공정을 거쳐 처리되며 탈수 후 함수율은 슬러지의 성상 혹은 탈수방법에 따라 차이는 있으나 80% 전후 높은 수분 함유율을 보유하고 있다. 이로 인해 소각이나 매립에 많은 어려움이 있으며 높은 유기물 함유율로 인한 2차 오염이나 육상매립의 한계 등으로 슬러지 감량화 및 재활용을 하기 위하여 슬러지 전처리, 중간처리 및 후처리에 대한 연구가 진행되어져 왔다^{2,3)}.

슬러지 개량은 슬러지의 함수율을 개선하기 위하 여 사용하는 슬러지 전처리 방법으로 열분해, 초음파, 응집제, 전기분해 등 물리적 혹은 화학적 개량법이 대 표적으로 사용되고 있다. 국내의 경우 생물학적 고도 처리에서 하수슬러지의 함수율을 감소시키기 위한 슬러지 개량법은 일반적으로 응집제를 주입하여 물 과 슬러지를 분리시키는 방법이다. 슬러지내의 체외 고분자물질(Extracellular Polymeric Substances, EPS) 은 미생물의 신진대사 과정에서 생성되는 물질로 대 부분 단백질과 탄수화물로 이루어져 있다²⁾. EPS의 단 백질은 물에 대한 친화도가 높아 EPS내에 결합수분 형태로 함유되어 있다. 유기응집제가 EPS와 결합하 면 매우 높은 압축성을 띄는 gel형태로 형성되어 탈 수과정에 악영향을 미친다고 보고되었다^{4,5)}. 기존 연 구에서 EPS를 제거하기 위하여 유기응집제를 주입 하여도 주입한 유기응집제 중량 대비 최대 약 86% 의 EPS까지 제거된다고 보고되었다⁶⁾. EPS를 제거하 기 위한 슬러지 개량이 필요하다.

EPS를 분해하기 위하여 사용하고 있는 방법은 자유 라디칼을 이용한 고급산화공정으로 과산화수소나 오존과 같이 OH 라디칼을 생성할 수 있는 산화제를 이용하여 유기물이나 오염물질을 산화시킨다. 과황산염은 OH 라디칼보다 높은 라디칼 에너지, 긴 라디칼

반감기, 낮은 해리에너지를 가지고 있으며, 작동매개 변수에 대한 의존도가 낮고 산화제의 성상이 고상이 기 때문에 저장 및 운송이 용이하다. 열, 산, 초음파, UV 등 다양한 방법으로 활성화가 가능하기 때문에 과 황산염 기반의 황산 라디칼이 고급 산화 공정으로 연 구되어져 왔다⁷⁾. 본 연구에서는 철염과 과황산나트 륨 주입량에 따른 슬러지의 TTF(Time to Filter Test), CST(Capillary Suction Time) 및 EPS를 정량적으로 분석하여 탈수능 개선 정도를 알아보고자 하였다.

2. 재료 및 방법

2.1. 실험재료

경기도 A시에서 활성슬러지공법으로 운영하고 있는 공공하수처리시설(Q=35,000 m³/d)에서 잉여슬러지를 채취하였다. 채취한 시료는 초순수로 수회세척한 후 VS 1%에 맞춰 준비하였다. 시료 성상은 Table 1과 같다.

2.2. 실험방법

휘발성고형물함량(gVS)을 기준으로 과황산나트륨 (Na₂S₂O₈) 및 황산철(FeSO₄ · 7H₂O)을 이용하여 하수 슬러지를 개량하였다. 시료는 각 500mL로 실험하였으며 Fe(II)/Na₂S₂O₈ 처리에 따른 슬러지 탈수능을 확인하기 위하여 Na₂S₂O₈의 주입량(mmol/gVS)과 Fe(II)/Na₂S₂O₈ 몰비(mol/mol)가 슬러지 탈수에 미치는 영향을 분석하였다. 기존 연구에서 PDS(peroxydisulfate) 0.8 mmol/gVS, Fe(II)/PDS 0.8 mol/mol 이상 주입시 슬러지 탈수능 개선 효과가 감소한다고 보고되었다^{9,10)}. 이에 Na₂S₂O₈의 주입량은 0.4, 0.5, 0.6, 0.7 mmol/gVS, FeSO₄ · 7H₂O은 Fe(II)/Na₂S₂O₈ 0.5, 0.6, 0.7 몰비(mol/mol)에 맞추어 주입하였다. 약품주입 후 Jar tester를 이용하여 200 rpm에서 2분간 교반하였다. 개량 후 탈수

Table 1. Characteristics of Sewage Sludge

pН	TS(mg/L)	VS(mg/L)	CST(sec)	TTF(sec)	Water content(%)	TB-EPS as carbohydrate(mg/L)	TB-EPS as protein(mg/L)
6.1	13,690	10,440	304.1	226.5	98.8	668.6	1590.33

능 평가로 TS, VS, CST, TTF, TB-EPS as carbohydrate, TB-EPS as protein 및 함수율을 측정하였다.

TTF 실험은 직경 90mm의 Buchner funnel를 사용하였다. 여지는 Whatman사의 No.1 Filter paper로 공극크기 11μm를 사용하였다. CST meter(CST-304M, Kemik corporation, Korea)를 이용하여 측정하였다. 여과지는 CST paper로 7 cm × 9 cm이고, Ø 1 cm × H 5 cm의 funnel을 사용하였다^{3,4)}. STTF 및 STTF는 슬러지 처리 전과 후의 슬러지 시료에 대한 비율로 식 (1)과 (2)를 이용하여 분석하였다^{3,4,10)}.

$$STTF = \frac{TTF_0}{TTF_{treat}} \tag{1}$$

TTF₀ = Time to filter test time before sludge conditioning(sec)

TTF_{treat} = Time to filter test time after sludge conditoning(sec)

$$SCST = \frac{CST_0}{CST_{treat}} \tag{2}$$

CST₀ = Capillary suction time before sludge conditioning(sec)

CS_{Ttreat} = Capillary suction time after sludge conditoning(sec)

TB-EPS(Tightly Bound-EPS)는 EPS를 구성하고 있는 carbohydrate와 protein을 용출시켜 각각의 농도를 EPS의 평가 지표로 활용하였다. carbohydrate는 phenol-sulfuric acid method를 protein은 lowry method를 이용하여 분석하였다²).

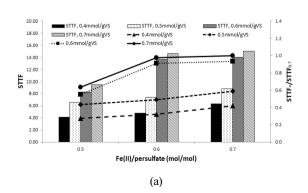
3. 결과 및 고찰

3.1. EPS의 변화

슬러지의 TB-EPS 변화를 확인하기 위하여 TB-EPS as carbohydrate 및 protein의 감소율을 분석하였다(Table 2). Na₂S₂O₈ 주입량 및 Fe(II)/Na₂S₂O₈ 몰비가 증가함에 TB-EPS as carbohydrate는 9.32%에서 37.16%로, TB-EPS as protein은 11.45%에서 57.34%로 감소하였다. protein의 감소율이 carbohydrate의 감소율보다 크게 나타났으며 TB-EPS의 감소율은 STTF와 SCST와유사한 경향을 나타내었다. EPS는 대부분 단백질과다당류로 이루어져 있으며 EPS의 단백질이 친수성을 띄고 있어 슬러지 탈수를 방해하는 것으로 보고되었다^{4,5,10)}. 이는 TB-EPS의 단백질 구조의 파쇄가 탈수능에 영향을 미치는 것으로 판단된다. TB-EPS as carbohydrate/Na₂S₂O₈(g/g) 및 TB-EPS as protein/Na₂S₂O₈(g/g)은 Na₂S₂O₈ 0.6 mmol/gVS, Fe(II)/Na₂S₂O₈ 0.6 및

Table 2. Effect of Fe(II)/Na₂S₂O₈ Treatment as TB-EPS as Carbohydrate and Protein

Fo/II)/No.C.O	Na ₂ S ₂ O ₈ dosage - (mmol/gVS)	Decreasir	ng rate	TB-EPS as	TB-EPS as protein/ Na ₂ S ₂ O ₈ (g/g)
Fe(II)/Na ₂ S ₂ O ₈ (mol/mol)		TB-EPS as carbohydrate(%)	TB-EPS as protein(%)	carbohydrate/ Na₂S₂O ₈ (g/g)	
	0.4	9.32	11.45	0.065	0.191
0.5	0.5	15.73	17.82	0.088	0.238
0.3	0.6	20.78	27.15	0.097	0.302
	0.7	23.48	33.96	0.094	0.324
	0.4	11.07	16.25	0.078	0.271
0.6	0.5	18.65	24.63	0.105	0.329
0.6	0.6	32.25	47.48	0.151	0.529
	0.7	35.94	55.03	0.144	0.525
	0.4	12.43	17.72	0.087	0.296
0.7	0.5	19.81	27.15	0.111	0.363
0.7	0.6	33.02	49.79	0.155	0.554
	0.7	37.16	57.34	0.149	0.547


0.7 mol/mol 조건에서 각각 0.529 및 0.554로 크게 나 타났다.

3.2. STTF 및 SCST의 변화

Fe(II)/Na₂S₂O₈ 처리에 따른 슬러지의 탈수능 변화 를 확인하기 위하여 식 (1)과 (2)를 이용하여 STTF 및 SCST를 Fig. 1과 같이 나타내었다. TTF 및 CST는 탈수장치 운전 및 약품주입량을 결정하는 지표로 이 용되고 있다. STTF 및 SCST는 처리 전후 슬러지의 TTF 및 CST의 비율로 1보다 높을 경우 슬러지 탈수가 개선되었다고 볼 수 있다¹⁰⁾. STTF 및 SCST는 Fe(II)/ Na₂S₂O₈ 몰비와 Na₂S₂O₈(SP, Sodium persulfate) 주입 량이 증가함에 따라 증가하였으며 Fe(II)/Na₂S₂O₈ 몰 비, Na₂S₂O₈ 주입량에 따라 STTF는 1.00에서 15.00로, SCST는 1.00에서 4.51로 증가하는 것으로 나타나 슬러 지 탈수능이 개선되었음을 보여주고 있다. 이는 PDS 0.6 mmol/gVS, Fe(II)/PDS 0.6 mol/mol조건에서 슬러 지 탈수능 개선효과가 높다는 연구 결과와도 유사하 였다^{9,10)}. Fe(II)/Na₂S₂O₈ 0.6 mol/mol 조건에서 STTF 및 SCST는 Na₂S₂O₈ 0.5 mmol/gVS는 3.05 및 7.35였 고, 0.6 mmol/gVS는 4.19 및 13.64로 Na₂S₂O₈ 주입량 에 따른 변화가 가장 크게 나타났다. Fe(II)/Na₂S₂O₈ 0.7 mol/mol, Na₂S₂O₈ 0.7 mmol/gVS을 기준으로 주입 량에 대한 STTF와 SCST의 비는 Fe(II)/Na₂S₂O₈ 0.6 mol/mol, 0.6 mmol/gVS조건에서 0.93과 0.91로 주입 량 대비 개선 효과가 높게 나타났다.

3.3. 함수율의 변화

Fig. 2는 Fe(II)/Na₂S₂O₈ 주입량에 따른 슬러지 함수

율과 TB-EPS as protein을 분석하여 나타낸 것이다. TB-EPS as protein는 Fe(II)/Na₂S₂O₈ 주입량에 따라 함 수율과 유사한 경향으로 감소하였다. 이를 통해 EPS 와 결합되어 있거나 세포 내에 존재하는 수분이 Fe(II)/ Na₂S₂O₈ 처리에 의해 수용액상으로 유출되었고 기계 적 탈수로 제거할 수 있을 것으로 판단된다. 하수슬 러지의 함수율은 초기 약 98.8%에서 Fe(II)/Na₂S₂O₈ 처 리에 따라 82.6%까지 감소하여 슬러지 함수율 개선 에 효과가 있는 것으로 나타났다. 이는 전환된 Fe(III) 가 무기응집제의 역할로 미세한 입자들을 결합시켜 플 럭을 형성하여 함수율을 개선한 것으로 사료된다¹¹⁾. Na₂S₂O₈ 0.6 mmol/gVS 조건에서 Fe(II)/Na₂S₂O₈ 0.5, 0.6 및 0.7 mol/mol의 함수율은 각각 85.2%, 83.1% 및 83.0%로 Fe(II)/Na₂S₂O₈ 0.6 mol/mol과 0.7 mol/mol의 차이는 0.1%p로 나타났다. 또한 Na₂S₂O₂ 0.6 mmol/gVS 조건에서 Fe(II)/Na₂S₂O₈ 0.5, 0.6, 0.7 mol/mol의 TB-EPS as protein의 감소율은 27.15%, 47.48%, 49.79%로 나 타났으며 Fe(II)/Na₂S₂O₈ 0.6 mol/mol에서 주입량 대 비 탈수능 개선효과가 높게 나타났다.

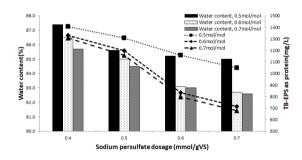


Fig. 2. Effect of Fe(II)/Na₂S₂O₈ treatment on water content and TB-EPS as protein.

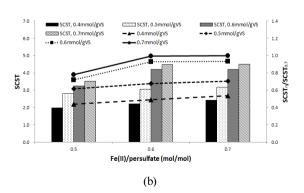


Fig. 1. Effect of Fe(II)/Na₂S₂O₈ treatment on STTF and SCST (a: STTF, b: SCST).

4. 결 론

Fe(II)/Na₂S₂O을 이용한 하수슬러지의 탈수능 개 선여부를 알아보기 위하여 탈수특성을 분석하였고 다음과 같은 결론을 얻을 수 있었다.

- Na₂S₂O₈ 주입량이 증가함에 따라 STTF는 초기
 1.00에서 15.00까지 SCST는 1.00에서 4.51까지 각각 증가하였으며, Na₂S₂O₈ 0.6 mmol/gVS, Fe(II)/ Na₂S₂O₈ 0.6 mol/mol 조건에서 주입량 대비 슬 러지 탈수능 개선효과가 높게 나타났다.
- 2) Fe(II)/Na₂S₂O₈ 처리시 주입량이 증가함에 따라 TB-EPS as carbohydrate 및 protein의 감소율은 각각 37.16% 및 57.34%까지 증가하였으며, TB-EPS의 감소율은 STTF 및 SCST와 유사한 경향을 나타냈었다. TB-EPS as protein/Na₂S₂O₈(g/g)은 Na₂S₂O₈ 0.6 mmol/gVS, Fe(II)/Na₂S₂O₈ 0.7 mol/mol 조건에서 0.554 g/g로 가장 높게 나타났으며, Na₂S₂O₈ 0.6 mmol/gVS 조건에서 Na₂S₂O₈ 주입량 대비 TB-EPS 감소량이 크게 나타났다.
- 3) Na₂S₂O₈ 0.6 mmol/gVS, Fe(II)/Na₂S₂O₈ 0.6 mol/mol 조건에서 함수율은 83.1%까지 낮아져 주입 량 대비 개선효과가 높게 나타났다. Fe(II)/Na₂S₂O₈ 처리는 슬러지를 파쇄하는 고급산화공정으로 Fe(II)/Na₂S₂O₈ 처리 후 유기응집제와 같은 고분 자 응집제 처리를 사용하여 파쇄된 미세한 입 자들을 응집시켜준다면 탈수능 개선에 더욱 효과적일 것으로 사료된다.

References

- 1. Ministry of Environment, "Sewer Statistics", (2020).
- Jeon, B. C. and Nam, S. Y., "The relation between sewage sludge solubilization and extracellular polymeric substances", Journal of the Korea Organic Resource Recycling Association, 27(4), pp. 43~49. (2019).
- Nam, S. Y., Kim, J. H. and Kim, S. H., "Enhanced Dewaterability of Sewage Sludge by a Natural Inorganic Conditioner", Korean Society of Environment

- Engineers, 34(10), pp. 651~655. (2012).
- Liu, J., Yang, Q., Wang, D., Li, X., Zhong, Y., Li, X., Deng, Y., Wang, L., Yi, K. and Zeng, G., "Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation", Bioresource Technology, 206, pp. 134~140. (2016).
- Citeau, M., Larue, O. and Vorobiev, E., "Influence of salt, pH and polyelectrolyte on the pressure electrodewatering of sewage sludge", Water Research, 45, pp. 2167~2180. (2011).
- To, V. H. P, Nguyen, T. V. and Bustamated, H., "Deleterious effects of soluble extracellular polymeric substances on polyacrylamide demand for conditioning of anaerobically digested sludge", Journal of Environmental Chemical Engineering, 7, p. 102941. (2019).
- Lee, J. S., Gunten, V. U. and Kim, J. H., "Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks", Environmental Science and Technology, 54, pp. 3064~3081. (2020).
- Zhang, Q., Fang, Shiyu., Cheng, Xiaoshi., Wang, Feng., Zhang, L., Huang, W., Du, W., Fang, F., Cao, J. and Luo, J., "Persulfate-based strategy for promoted acesulfame removal during sludge anaerobic fermentation: Combined chemical and biological effects", Journal of Hazardous Materials, 434, p. 128922. (2022).
- Liu, Jun., Yang, Qi., Wang, D., Li, X., Zhong, Y., Li, X., Deng, Y., Wang, K. Y. and Zeng G., "Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation", Bioresource Technology, 206, pp. 134~140. (2016).
- 10. Guo, J., Yihan, G. Q., Yihua, C., He, Q., Zhou, H., Liu, J., Zou, C. and Chen, W., "Insight into sludge dewatering by advanced oxidation using persulfate as oxidant and Fe²⁺ as activator: Performance, mechanism and extracellular polymers and heavy metals behaviors", Journal of Environmental Management, 288, p. 112476. (2021).
- 11. Li, H., Wen, Y., Cao, A., Huang, J., Zhou, Q. and

Somasundaran, P., "The influence of additives (Ca²⁺, AL³⁺ and Fe³⁺) on the interaction energy and loosely bound extracellular polymeric substances(EPS) of

activated sludge and their flocculation mechanism", Bioresource Technology, 114, pp. 188~198. (2012).