• Title/Summary/Keyword: 용접 비드

Search Result 240, Processing Time 0.021 seconds

Development of rotor overlay welding process (로타 오버레이 용접공정 개발)

  • Lee, Kyong-Woon;Kim, Dong-Jin;Kang, Sung-Tae
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.12-12
    • /
    • 2009
  • 터빈에서 핵심부품인 로터는 블레이드를 원심 운동시키는 대형 단조강이며, 고압의 증기 조건에서 고속회전하며 고온에서 운전과 저온에서 과속시험 동안 높은 원심력을 받는다. 또한 기동/정지 천이 동안 열응력을 받기 때문에, 이러한 운전조건에 부합되는 소재로서는 높은 Creep 강도 및 피로강도를 가지는 CrMoV type의 강종이 사용되어져 왔다. 발전소의 대용량화 및 고온화에 따라 종래의 증기조건에서 사용되어져 왔던 1%CrMoV강은 내산화성 및 내부식성이 문제가 되어 더 이상 사용이 불가하며, 고온/고압하에서도 우수한 소재 특성을 가지는 12%Cr강의 사용이 필수적이다. 그러나 12%Cr강으로 제작되는 로타는 Cr 양이 높기 때문에 저널부에 Galling 또는 Scuffing 이라 불리는 부적절한 마모현상과 사용 중 소착이 발생하기 쉬운 단점이 있기 때문에, 저널부에 Cr 함유량 2~3% 이하의 저합금강을 오버레이 용접하여 육성하는 일체형 가공구조의 로타 저널부가 주목되어 왔다. 따라서 본 연구에서는 Large scale 로타가 용접 도중 급열 및 급냉이 되지 않으면서 균일한 온도로 일정 시간 유지할 수 있는 열관리 장치 개발, 최적 오버레이 용접조건 선정 및 용접부 건전성 시험 평가를 통하여 12%Cr 로타 저널부의 최적 오버레이 용접공정을 확립하고자 하였다. 용접 열관리 장치는 전기저항 가열방식을 적용하고 있으며 용접이 최종 완료되기 전까지 로타 제품 전체는 $93^{\circ}C$이상의 온도로 유지 되어져야 하며, 규정 용접후열처리 온도는 $650^{\circ}C{\pm}14^{\circ}C$ 이다. 또한 로타 오버레이 용접은 모재 Set up $\Rightarrow$ 용접예열 $\Rightarrow$ GTA용접 $\Rightarrow$ SA용접 $\Rightarrow$ 용접후열(Post heating) $\Rightarrow$ 용접후열처리(PWHT) $\Rightarrow$ 정삭가공 $\Rightarrow$ NDE(UT) 순으로 수행 되어진다 실제 로타의 1/3 Scale로 시험편을 제작하여, 오버레이 mockup 시험을 수행한 후 화학성분, 경도 분포, 인장강도, 충격인성 및 굽힘시험을 수행한 결과, 오버레이 용접에서 요구되어지는 용접 물성값을 만족하는 것으로 확인되었다. 또한 균열 등의 선형 결함이나 기공, 슬라그 혼입과 같은 결함은 관찰되지 않았으며, 용접 시 아크의 안정성과 슬라그의 박리성은 양호하였으며 비드의 외관도 미려하여 용접 작업성도 양호하였다.

  • PDF

The characteristics of bead welding on steel with process parameter during the laser-arc hybrid welding(I) - Effect of flow rate of shield gas and distance between laser and arc - (강의 레이저-아크 하이브리드 용접시 공정변수에 따른 비드용접특성 (I) - 보호가스 유량 및 레이저 아크간 거리의 영향 -)

  • Kim, Jong-Do;Myung, Gi-Hoon;Song, Moo-Keun;Oh, Jae-Hwan;Suh, Jeong
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Recently many studies for improvement of productivity and automation of process are in progress, and among others, laser-arc hybrid welding that combined laser and arc has attracted much attention. Since parameters by interactions as well as the parameters of each heat source should be considered, There are a lot of hardship in actual application, even though many researches have been done so far. Therefore in this study, bead welding was done to examine the effects of the flow rate of shield gas and the distance between laser and arc during laser-arc hybrid welding. As for hybrid heat source, disk laser and MIG were used. As experiment result, sound bead and weld with no defect were formed when the flow rate of front and rear shield gas were respectively 20 l/min and 15 l/min, and deep penetration was done at DLA=3 mm.

A Study of the Thermal Analysis of Horizontal Fillet Joints by Considering the Bead Shape in GMA Welding (GMA 용접에서 비드형상을 고려한 수평필릿용접부의 온도해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.71-78
    • /
    • 2001
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

The Thermal Elasto-plastic Analysis Using Layered Shell Element (적층 쉘 요소를 이용한 용접 열탄소성 해석)

  • Song, H.C.;Yum, J.S.;Jang, C.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.220-224
    • /
    • 2005
  • The thermal elasto-plastic analysis for the prediction of welding distortion of a 3 dimensional large-scaled ship structure is a very time-consuming work since the analysis is a nonlinear problem, and a lot of finite elements are needed to simulate the large ship hull block. Generally, 3-D finite elements have been used in the 3-D welding distortion problem to assess precisely the temperature gradient through the thickness direction of the welding plate. As a result of the adoption of 3-D element, degrees of freedom are rapidly increased in the problem to be solved. In this study, to improve the time efficiency of welding thermal elasto-plastic analysis, a layered shell element was proposed to simulate 3-D temperature gradient, and the results were compared with the experiment. The experiments were carried out for the type of bead-on-plate welding, and we found the measured data have a good agreement with the FEA results.

  • PDF

Friction stir welding with back-bead to improve fatigue strength (이면비드를 가진 마찰교반용접에 대한 피로강도에 관한 연구)

  • Rajesh, S.R.;Yun, Byeong-Hyeon;Kim, Heung-Ju;Kim, Teuk-Gi;Cheon, Chang-Geun;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.17-19
    • /
    • 2007
  • The fatigue experiments of friction stir welded Al-6061-T6 alloy with and with out back bead were performed to investigate the variation in fatigue strength and life of the Joint. It was found that there were always existed flaws at the roots of friction stir welds for the normal welding parameters and clamping conditions. In order to overcome this root flaws, friction stir welds with optimum back bead has been developed. The test results with root flaws and with back bead were compared. The fatigue life of weld with root flaws was 5-10 times shorter than that of the friction stir weld with back bead.

  • PDF

Selection of an Optimal Welding Condition for Back Bead Formation in GMA Root Pass Welding (GMA 초층용접에서 이면비드 생성을 위한 최적용접조건의 선정)

  • Yun, Young-Kil;Kim, Jae-Woong;Yun, Seok-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.86-92
    • /
    • 2010
  • In GMAW processes, bead geometry is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage, welding speed, shielding gas and so on. Thus the welding condition has to be selected carefully. In this paper, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the GMA V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. Through the experiments, the target values of the back bead width and the height were chosen as 4mm and 1mm respectively for the V-grooved butt weld joint. From a series of welding test, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

A Study on the Optimum Tandem Welding Torch Distance for the Reduction of CO2 Shielding Gas Consumption (Tandem 용접 CO2 보호가스 사용량 감소를 위한 최적 토치 극간거리에 대한 연구)

  • Lee, Jun-Yong;Kim, Ill-Soo;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.294-301
    • /
    • 2012
  • Shipbuilding industry has used a lot of $CO_2$ gas as a shielding gas for arc welding and thus, development of welding equipment which can reduce the amount of $CO_2$ gas is requested widely. Therefore, this study is focused on the examination of optimum welding torch distance of Tandem welding system as a fundamental study for the optimum shape design of torch nozzle. $CO_2$ shielding gas distribution and welding bead shape formation by the torch distance are examined. Results show that according to the torch distance variation, most effective shielding gas layer can be formed and quantitative determination of the optimum torch distance can result in the reduction of $CO_2$ shielding gas consumption.

Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO2 Laser Welding of Zn-Coated Steel (아연코팅 강판의 CO2 레이저용접시 인프로세스 모니터링을 위한 측정신호와 용접결함과의 관련성 연구)

  • Kim, Jong-Do;Lee, Chang-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1507-1512
    • /
    • 2010
  • In this study, the plasma induced by $CO_2$ laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints according to Post-Processing in Weld Bead Toes (용접지단부의 후처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Hong, Sung Wook;Kyung, Kab Soo;Choi, Dong-Ho;Yong, Hwan Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.701-713
    • /
    • 2000
  • In this study, the 4-point bending test been performed in order to estimate effect of grinding on fatigue characteristics quantitatively for as-welded specimen, grinding specimen & TIG-dressing specimen for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength at $2{\times}106$cycles of grinding specimen and TIG-dressing specimen has been increased compared with as-welded specimen and satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC. As a result of beachmark test, fatigue cracks on all specimens have occurred at several points where stress

  • PDF

A Study of the Application of Neural Network for the Prediction of Top-bead Height (표면 비드높이 예측을 위한 최적의 신경회로망의 적용에 관한 연구)

  • Son, J.S.;Kim, I.S.;Park, C.E.;Kim, I.J.;Kim, H.H.;Seo, J.H.;Shim, J.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2007
  • The full automation welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed models using three different training algorithms in order to select an adequate neural network model for prediction of top-bead height.