• Title/Summary/Keyword: 용접 비드

Search Result 240, Processing Time 0.248 seconds

A Study on the Seam tracking and Control of the Welding Quality Using a Infrared sensor (적외선 센서를 이용한 용접선 추적 및 용접품질 모니터링에 관한 연구)

  • Kim I.S.;Son J.S.;Kim H.H.;Seo J.H.;Kim I.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.301-302
    • /
    • 2006
  • In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

Characteristics of manual welding process on carbon steel repair welding using buttering bead (버터링 비드를 이용한 탄소강 보수용접에서 수동 용접 프로세스의 특성)

  • Song, Geun-Ho;Kim, In-Su;Lee, Myeong-Yeol
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.42-44
    • /
    • 2007
  • Methods of repair welding are different to production welding for welding position, welding process, welding power source, heating methods. This study investigated proper the welding process used the welding process SMAW and GTAW in the weldment of inconel filler metals. Mechanical test showed that SMAW and GTAW process had higher mechanical properties than those of material specification. Both SMAW and GTAW welding process can appy the repair welding. In comparison, GTAW welding process had more higher mechanical properties in the weldment.

  • PDF

An Experimental Study on Underwater Wet Arc Welding and Weldability (TMCP강의 수중 ARC용접 실험과 용접성)

  • 오세규;김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.67-73
    • /
    • 1987
  • The feasibility for a practical use of underwater wet arc welding process is experimentally investigated by using low hydrogen and high oxide type electrodes and TMCP steel plates. Main results are summarized as follows: 1)The absorption speed of the coated low hydrogen and high titanium oxide type eletrodes becomes constant after about 30 minutes in water, and more steeping time in water does not influnce welding arc behavior. 2) By bead appearance and X-ray inspection, the high titanium oxide type electrode is better than the low hydrogen type in underwater arc welding process. 3) The mechanical properties of underwater wet arc welds depend upon welding conditions more than those of in-air welds, and the optimum welding condition can be obtained. 4) Because of quenching effect by rapid cooling rate in underwater wet welding, the maximum hardness of HAZ is increased relatively higher in underwater wet welding, process.

  • PDF

Development of Algorithm for Prediction of Bead Height on GMA Welding (GMA 용접의 최적 비드 높이 예측 알고리즘 개발)

  • 김인수;박창언;김일수;손준식;안영호;김동규;오영생
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.40-46
    • /
    • 1999
  • The sensors employed in the robotic are welding system must detect the changes in weld characteristics and produce the output that is in some way related to the change being detected. Such adaptive systems, which synchronise the robot arm and eyes using a primitive brain will form the basis for the development of robotic GMA(Gas Metal Arc) welding which increasingly higher levels of artificial intelligence. The objective of this paper is to realize the mapping characteristics of bead height through learning. After learning, the neural estimation can estimate the bead height desired from the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) are chosen from an estimation error analysis. A series of bead of bead-on-plate GMA welding experiments was carried out in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the bead height with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

The weldability and mechanical property of CP titanium by GTAW (순 타이타늄의 GTAW 용접성 및 기계적 특성)

  • Hong, Jae-Keun;Kim, Jee-Hoon;Lee, Chae-Hoon;Yeom, Jong-Taek;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.57-57
    • /
    • 2009
  • 산업의 고도화에 따른 구조물의 사용 환경이 열악해지고 최근 에너지저감과 환경문제 개선을 위한 경화의 요구에 따라 뛰어난 내식성 및 우수한 고비강도 특성을 갖고 있는 타이타늄 및 타이타늄합금의 활용에 대한 연구가 많은 주목을 받고 있다. 이에 따라 타이타늄 신합금의 개발뿐만 아니라 기존에 개발되어 비교적 보편적으로 적용되고 있는 타이타늄 부품의 제조 및 성형기술에 대한 수요도 급증하고 있다. 특히, 기기 및 부품 제조를 위한 용접/접합기술도 매우 중요한 요소기술로 자리메김하고 있다. 타이타늄은 산소, 수소 등의 침입형 원소와의 친화력이 강한 활성이 큰 금속으로 용접시 고온에 노출되면 급격히 산화 및 취화 등의 문제를 발생한다. 따라서 타이타늄의 용접시에는 $426^{\circ}C$이상의 온도에서는 대기로부터 용접부가 차단되도록 하는 쉴딩기술이 매우 중요하다. 타이타늄의 용접은 일반적으로 아크용접, 전자빔 용접, 레이저 용접 및 확산접합 등이 적용되고 있으나 용접입열 조정이 용이하고 아크 안정성이 높고 용접부의 기계적 특성이 우수한 GTA 용접이 작업성을 고려하여 가장 많이 적용되고 있다. 본 연구에서는 미국용접학회(AWS)의 타이타늄 용접가이드를 분석 및 소개하였고, 1t 이하의 박판 CP Ti를 대상으로 GTAW 용접부 미세조직 및 기계적 특성을 분석하였다. 이때, 용접 비드폭 제어 및 펄스 용접기술을 통하여 박판 타이타늄의 최적 GTAW 공정변수 제어기술을 분석하였다.

  • PDF

Study on an Evaluation of Remote Control Torch Performance to reduce CO2 Welding Defects (CO2 용접결함 감소를 위한 원격 제어 토치 성능 평가 연구)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6282-6288
    • /
    • 2014
  • $CO_2$ welding is used widely in the field. On the other hand, welding defects occur when welders cannot adjust the current and voltage needed for welding and have to stop working to adjust the current and voltage, causing sudden cooling down of the welding structure inside a vehicle or tank where the control panel is invisible or when work site is far. This study used three types of existing $CO_2$ welders. This also applied SS400 rolled steel for welding structural purposes for remote control torch welding, perform a welding test through v-groove butt welding with a remote control torch and existing $CO_2$ welding torch, conducted visual inspection on the appearance of a welded top bead. In addition, the appearance quality of the welding part was monitored mainly through penetrant testing and a bending test to evaluate the welding defect reduction and the effect on the performance and compatibility by replacing the existing welder.

An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints (TIG처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Jung, Young Hwa;Kyung, Kab Soo;Hong, Sung Wook;Kim, Ik Gyeom;Nam, Wang Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.617-628
    • /
    • 2000
  • In this study, the 4-point bending test has been performed in order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength of as-welded specimens has been satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC, and fatigue strength at $2{\times}106cycles$ of TIG-dressing specimens has been increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks have been occurred at several points, where the radius of curvature and flank angle in the weld bead toes are low, and grown as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has been closely related to the flank angel and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has been largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

A study on mathematical modeling and heat transfer analysis to predict weld bead geometry in horizontal fillet welding (수평필릿용접의 용접부 형상을 예측하기 위한 수학적 모델링 및 열전달 해석에 관한 연구)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 1996
  • The horizontal filet welding is prevalently used in heavy and ship building industries to join the parts. The phenomena occurring in the horizonal fillet welding process are very complex and highly non-linear, so that its analysis is relatively difficult. Furthermore, various kinds of weld defect such as undercut, overlap, porosity. excess weld metal and incomplete penetration can be induced due to improper welding conditions. Among these defects, undercut, overlap and excess weld metal appear frequently in horizontal filet welding. To achieve a satisfactory weld bead geometry without weld defects, it is necessary to study the effect of welding conditions in the weld bead geometry. For analyzing the weld bead geometry with and without weld defects in horizontal fillet welding, a mathematical model was proposed in conjunction with a two-dimensional heat flow analysis adopted for computing the melting tone in . base metal. The reliability of the proposed model was evaluated through experiments. which showed that the proposed model was very effective for predicting the weld bead shape with or without weld defects in horizontal fillet welding.

  • PDF

Estimation of Weld Bead Shape and the Compensation of Welding Parameters using a hybrid intelligent System (하이브리드 지능시스템을 이용한 용접 파라메타 보상과 용접형상 평가에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1379-1386
    • /
    • 2005
  • For efficient welding it is necessary to maintain stability of the welding process and control the shape of the welding bead. The welding quality can be controlled by monitoring important parameters, such as, the Arc Voltage, Welding Current and Welding Speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using fuzzy logic and neural networks for improving welding qualify and maintaining the desired weld bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and remove the welding detects.

Heat Source Modeling of Laser Keyhole Welding: Part 1-Bead Welding (레이저 키홀 용접의 열원 모델링: Part 1-비드 용접)

  • Lee Jae-Young;Lee Won-Beom;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.48-54
    • /
    • 2005
  • Laser keyhole welding is investigated using a three-dimensional Gaussian heat source, and the heat source parameters such as the keyhole depth, welding efficiency and power density distribution factor are determined in a systematic way. For partial penetration, the keyhole depth is same as the penetration and is predicted using the experimental data. The welding efficiency is calculated using the ray-tracing method and the power density distribution factor is determined from the bead shape. Full penetration is classified into the transition, normal and excessive modes depending on the degree of keyhole opening. Thermal analysis of the bead-on-plate welds is conducted using the Gaussian heat source, and the calculated weld geometries show reasonably good agreements with the experimental results.