• Title/Summary/Keyword: 용액 흡수량

Search Result 163, Processing Time 0.019 seconds

Change in concentration and bioactivity of soil-applied pretilachlor under various soil moisture conditions (다양한 토양수분조건에 처리한 pretilachlor의 농도 및 활성 변화)

  • Lee, Do-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.81-85
    • /
    • 1999
  • Concentration change of soil-applied pretilachlor (2-chloro-2',6'-diethyl- N-2-propoxyethyl)-actanilide) was investigated under upland condition with various soil moisture contents ranging from 50 to 80%(water content by weight). Following pretilachlor from each soil solution was extracted by centrifugation using double tubes, its concentration was determined by HPLC. Pretilachlor concentration in the soil solutions were almost the same under various soil moisture conditions. However, the total amount of pretilachlor increased as the soil moisture content increased. With increasing soil moisture content, the bioactivity of soil-applied pretilachlor on inhibiting the growth of Echinochloa ultilis Ohwi et Yabuno and the absorption of $^{14}C$-pretilachlor in its plants were also enhanced. Our results demonstrate that the absorption of pretilachlor in plants varies with soil moisture content and thus the bioactivity of soil-applied pretilachlor on inhibiting plant growth is different under various soil moisture conditions at the same dosage based on air-dried weight.

  • PDF

Effect of Soluble Salts and Their Concentrations on Water Absorption of Polyacrylamide Hydrogel (무기염의 종류 및 농도가 Polyacrylamide 고흡수성 수지의 수분 흡수에 미치는 영향)

  • Wang, Hyun-Jin;Choi, Jong-Myung;Lee, Jong-Suk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2005
  • This research was conducted to determine the amount of water absorbed by a polyacrylamide hydrogel such as Stocksorb C (STSB), effect of salts on inhibition in hydration of STSB, and the hydrogel effects on changes of nutrient concentration in external solution. Absorption of deionized water by STSB reached a maximum of 180 $mL{\cdot}g^{-1}$. Monovalent soluble salts such as $KH_2PO_4,\;KNO_3$, and $(NH_4)_2SO_4$ reduced absorption of the hydrogel, but the degrees of inhibition in absorption were similar in three kinds of salts. Twenty milliequivalents per liter of $Ca_{2+}\;or\;Mg_{2+}$ reduced water absorption of STSB to $14\%$ compared to those of deionized water. Solution absorption was consistently lower in the presence of divalent cations than in the presence of the monovalent cations. But the absorption was unaffected by the uncharged salt such as urea in all concentrations tested. The final $K^+\;and\;NH_4^+-N$ concentrations of the solution remaining after absorption by STSB was higher than those of the initial solution. The soaking of STSB to full strength of Hoagland solution resulted in increase of $NO_3^--N,\;H_2PO_4^-\;and\;SO_4^{2-}$ concentrations in external solution compared to initial solution, reaching 5,300, 250 and 1,500 $mL{\cdot}g^{-1}$, respectively, at 24 hrs after soaking.

A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole (암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구)

  • Lee, Jae-Cheol;Lee, Ki-Bong;Chun, Byung-Hee;Lee, Chan-Ho;Ha, Jong-Joo;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.273-280
    • /
    • 2001
  • An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, experimental analyses on heat transfer characteristics for removal of absorption heat in ammonia-water bubble mode absorber were performed. Heat transfer coefficients were estimated as the variations of input gas flow rate, solution flow rate, temperature, concentration, absorber diameter and height, and input flow direction. The increase of gas and solution flow rate affects positively in heat transfer. However, the increase of solution temperature and concentration affects negatively. Moreover, under the same Reynolds Numbers, countercurrent flow is superior to cocurrent flow in heat transfer performance. In addition, from these experimental data, empirical correlations which can explain easily the characteristics of heat transfer are derived.

  • PDF

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

An investigation of absorption phenomena in the horizontal staggered tube absorber for various LiBr solution flow rates (LiBr용액량 변화에 따른 수평다관 흡수기의 특성 연구)

  • Kwon, Yul;Yoon, Sang-Guk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.332-338
    • /
    • 1999
  • An experimental study of absorption phenomena of water vapor into LiBr solution was carried out to find out the optimum solution flow rate. The staggered bundle of horizontal absorption tubes, which are the same configuration as the commercial heat pump, were tested. The results showed that the heat transfer and absorption rate were enhanced with the increase of LiBr solution flow rate. Those values for different absorber pressures showed the same qualitative trends. The optimum flow rate of solution was obtained as three times of the designed flow rate.

  • PDF

인삼사포닌의 모에 미치는 효과에 관한 연구

  • Kim, Chang-Gyu;Sim, Sam-Ju;Lee, Ok-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 1979
  • 인삼(人蔘)사포닌으로 처리(處理)한 모발(毛髮)의 인장강도(引張强度)와 신장도(伸張度)를 collagen 가수분해물(加水分解物)로 처리한 모발(毛髮)과 비교(比較)하였다. 모발(毛髮)에 인삼(人蔘)사포닌 흡수량(吸收量)은 high speed liquid chromatography로 측정(測定)하였으며 liquid scintillation counter로 확인(確認)하였다. 모발(毛髮)에 collagen 가수분해물(加水分解物)의 흡수량(吸收量)은 모발(毛髮)을 collagen 가수분해물(加水分解物) 용액(溶液)속에 침적(沈積)시켰을 때 처음 30분(分) 동안은 많은 량(量)의 흡착(吸着)이 일어났으나 1시간(時間) 경과후(經過後)부터는 더 이상(以上)의 증가(增加)는 보이지 않았다. 이와는 반대(反對)로 인삼(人蔘)사포닌의 경우(境遇)는 침적시간(沈積時間)의 증가(增加)에 비례(比例)하여 흡수량(吸收量)의 증가(增加)를 나타내었다. 실험결과(實驗結果)는 인삼(人蔘)사포닌이 collagen 가수분해물(加水分解物) 보다 모발(毛髮)에 더욱 효과적(效果的)임을 보여 주었고, 그리고 인삼(人蔘)사포닌의 모발(毛髮)에 대(對)한 흡수(吸收)와 인장강도(引張强度)의 증가(增加)는 모발(毛髮)의 strain-stress곡선(曲線)과 인삼(人蔘)사포닌의 계면활성(界面活性)에 의(依)해 설명(說明)하였다.

  • PDF

Noncondensable gas's influence in waster vapor absorption accompanying interfacial disturbance into aqueous solution of LiBr

  • Dong-Ho RIE;Keun-Oh Lee
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.63-70
    • /
    • 1992
  • The aim of this research is to obtain a basic quantitative understanding of the effect of a noncondensable gas on the absorption of water vapor by a $H_2O$ / LiBr combination with n-octanol as the surfactant. Nonflowing aqueous solutions of LiBr (40,45,50 mass%) were exposed to saturated water vapor following the addition of an n-octanol sufactant (0.01 and 0.6 mass%). A small amount of a noncondensable gas (air) was allowed into the absorber (0.03 volume%) and its effect was analyzed by measuring the amount of water vapor absorbed. This study will aid to predict the performance of heat pump and safety operating condition when the noncondensable gas is not allowed in the absorber The results indicate that, in the presence of small amounts of a noncondensable gas, vapor absorption enhancement ratios are less than half o( those obtained under the same experimental conditions when a noncondensable gas is not present (1). The presence of a noncondensable gas causes the partial vapor pressure of air to increase at the vapor / liquid interface, which results in an instability of vapor absorption rate nd. hence, in an inhibition of interfacial disturbance.

  • PDF

Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure (고압고온 재생조건에서의 암모니아수-CO2 반응특성)

  • Kim, Yun Hee;Yi, Kwang Bok;Park, Sung Youl;Ko, Chang Hyun;Park, Jong-Ho;Beum, Hee Tae;Han, Myungwan;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.253-258
    • /
    • 2010
  • In the field of the $CO_2$ absorption process using aqueous ammonia, the effects of regeneration pressure and temperature on $CO_2$ absorption performances of the aqueous ammonia were investigated. The absorbents were prepared by dissolving ammonium carbonate solid in water to grant the resulted solution 0.5 $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) and various ammonia concentration (14, 20, 26 and 32 wt%). As-prepared absorbents were regenerated at high pressure and temperature (over $120^{\circ}C$ and 6 bar) before the absorption test. The absorption test was carried out by injecting the simulated gas that contains 12 vol% of $CO_2$ into a bubbling reactor. The introduction of 26 wt% of the ammonia concentration for $CO_2$ absorption test resulted in the higher absorption capacities than other experimental conditions. In particular, when the absorbents with 26 wt% of the ammonia were regenerated at $150^{\circ}C$ and 14 bar, the highest absorption capacity, $45ml\;CO_2/g$, was obtained. According to the analysis of absorbents using acid-base titration, the ammonia loss during the regeneration of the absorbents with a fixed ammonia concentration decreased as the regeneration pressure increased, while it increased as the regeneration temperature increased. In the condition of fixed regeneration pressure and temperature, as expected, the ammonia loss increased as the ammonia concentration increased. The measured $CO_2$ loadings and ammonia concentrations of absorbents were compared to the values calculated by Electrolyte NRTL model in Aspen Plus.

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump (흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

Screening method of varietal resistance to planthoppers labeled with radioisotope $^{32}P$ ( I ) (방사성동위원소 $^{32}P$를 이용한 멸구 류에 대한 품종저항성 검정방법에 관한 연구(I))

  • Lee J. O.;Kim Y. H.;Park J. S.;Seok S. J.;Goh H. G.
    • Korean journal of applied entomology
    • /
    • v.20 no.2 s.47
    • /
    • pp.117-121
    • /
    • 1981
  • The screening method of varietal resistance on the plant hoppers has generally been evaluated as a reaction of plant after infesting insects. However, feeding amount of insects to the varieties was investigated in this experiment. The new method using isotope $^{32}P$ for rice varietal resistance to plant hoppers was carried out through the following method. Insects tested were caged for a few hours on the plants which had absorbed $^{32}P$ solution in small vials for $24\~48\;hours$. After feeding, insects were killed in the refrigerator with formalin solution, and then were measured by the feeding amount as a count per minute (CPM) with the G.M. Counter. The results obtained were summarized as follows; 1. The apparatus of Type D(Fig. 2) was most effective and the safest among four others. 2. The optimum amount of $H_3PO_4$ solution was found to be $2\~3m1$. 3. Radioactivity of $0.7\mu\;Ci.\;^{32}P$ was sufficient to check varietal difference of feeding amount by the brown planthopper. 4. Radioisotope was found from the body of insects but not in the cuticular layer nymphs cast off.

  • PDF