• Title/Summary/Keyword: 용량-반응 연구

Search Result 563, Processing Time 0.03 seconds

Conceptual Design of 50 kW thermal Chemical-Looping Combustor and Analysis of Variables (열량기준 50kW급 매체순환식 가스연소기의 개념설계 및 변수해석)

  • 류호정;진경태
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.289-301
    • /
    • 2003
  • To develop a chemical-looping combustion technology, conceptual design of 50 kW thermal chemical-looping combustor, which is composed of two interconnected pressurized circulating fluidized beds, was performed by means of mass and energy balance calculations. A riser type fast fluidized bed was selected as an oxidizer and a bubbling fluidized bed was selected as a reducer by mass balance for the chemical-looping combustor. Calculated values of bed mass, solid circulation flux, and reactor dimension by mass and energy balance calculations were suitable for construction and operation of chemical-looping combustor. It is concluded from the comparison of the design results and operating values of commercial circulating fluidized bed that the process outline is realistic. Moreover, the previous results support that oxygen carrier particle, NiO/bentonite, fulfills the conversion rates needed for the proposed design. The effects of system capacity, metal oxide content in a oxygen carrier particle, amount of steam input, gas velocity, and solid depth on design values were investigated and the changes in the system performance can be estimated by proposed design tool.

White Ginseng Saponin Upregulated the Production of -TNFTNF-α, IL-1β and NO in Primary Cultures of Mixed Glial Cells (고려인삼에 의한 신경면역 및 염증반응 조절: 백삼사포닌에 의한 교세포에서의 TNF-α, IL-1β 및 NO 생성 증가)

  • 성정훈;최동희;김동훈;전보권;최상현
    • Journal of Ginseng Research
    • /
    • v.28 no.2
    • /
    • pp.120-126
    • /
    • 2004
  • Glial cells such as astrocytes and microglial cells are the main source of proinflammatory cytokines and nitric oxide(NO) in the central nervous system, which exert neuroimmune and inflammatory functions and other various neurobiologic effects. Though Panax ginseng C.A. Meyer has been known to strengthen the body's defence mechanisms and also to maintain the homeostasis in the central nervous system, the effects of Panax ginseng on the production of immune and inflammatory mediators have not been studied well in the brain. Therefore, this study was designed to study the effects of ginseng saponins on the production of proinflammatory cytokines and NO in the primary cultures of mixed glial cells. White ginseng saponin, 200-500 $\mu$g/ml, showed significant cytotoxicity after 72 hrs and increased TNF-$\alpha$, IL-$\beta$, and NO production. Lower doses of 50-100 $\mu\textrm{g}$/ml showed little cytotoxicity until 72 hrs and also increased the production of TNF-$\alpha$, IL-1$\beta$, and NO. Triple immune staining showed that white ginseng saponin, 200$\mu\textrm{g}$/ml for 72 ks, induced stellation of astrocytes and iNOS expression exclusively in microglial cells. Taken together, the white ginseng saponin increased the production of proinflammatory cytokines such as TNF-$\alpha$ and IL-1$\beta$, and induced iNOS expression and NO production in mixed glial cell cultures, which may be ascribed to the enhancement of central immune responses and the regulation of inflammatory reactions by Panax ginseng.

A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics (리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구)

  • Jeong Won-Joong;Ju Jeh-Beck;Sohn Tai-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.156-162
    • /
    • 1999
  • Various types of iron oxide based materials as a cathode of lithium secondary battery have been prepared and their electrochemical characteristics have been also observed. In order to understand the fundamental characteristics of iron oxide electrode, three kinds of iron oxides such as iron oxides formed by direct oxidation of iron plate or iron powders and FeOOH powders were tested with cyclic voltammetry. The oxidation and reduction peaks due to the reaction of intercalation and deintercalation were not observed for the iron oxide prepared with iron plate and FeOOH powders. In case of iron oxide prepared from iron powders, only one reduction peak was observed. A layered form of $LiFeO_2$ was synthesized directly from $FeCl_3\cdot6H_2O,\;NaOH\;and\;LiOH$ and LiOH by hydrothermal reaction. The effect of NaOH on the electrode performance was examined. When increasing NaOH, it provides the electrode with less discharge capacity and efficiency, however, decreasing rate of discharge capacity became smaller. $LiFeO_2$ synthesized with the molar ratio of $NaOH/FeCl_3/LiOH$, 2/1/7 showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles.

The Analysis of Nitrogen Plasma Using One-dimensional Self-consistent RF Fluid-Model (유체 모델을 이용한 질소 플라즈마의 특성 분석)

  • 임장섭;소순열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.28-35
    • /
    • 2004
  • $N_2$ has been one of the most useful gases in industrial application, for example, plasma ashing, surface cleaning and decomposition of pollution gases. In order to clarify $N_2$ plasma properties and increase practical applications, many experimental and theoretical investigations have been carried out until now on. In this papa, we examined the characteristics of $N_2$ RF Plasmas using one-dimensional fluid model. $N_2$ plasmas showed a double-layer structure in both sheath regions as the power source voltage becomes higher. Generally, a double-layer structure should be showed in electro-negative plasmas, but not in electro-postive plasmas such as $N_2$ discharge. However, most electrons in $N_2$ plasmas lost their energy by many excitation reactions in the near of both electrodes where electron collisions were actively executed and such continuous reactions during an RF period made this structure strong with increase of the power source voltage. The dependence of $N_2$ plasma properties on pressure was also discussed.

Estimation of the Number of Salmonellosis Using Microbial Risk Assessment Methodology (미생물 위해성 평가 방법을 이용한 살모넬라 발생수 추정)

  • 최은영;박경진
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.2
    • /
    • pp.167-177
    • /
    • 2004
  • The number of foodborne salmonellosis was estimated by using microbial risk assessment(MRA) methodology and the possibility of application was studied through comparison with previous results. The contamination levels of Salmonella sp. were estimated by using published domestic studies(1997∼2000) and monitoring data (1999∼2001) from food-safety related institutes. Data on food consumption came from the 2001 National Health and Nutrition Survey, and dose-response models from studies in other countries. Simulation results showed that there were 753,368 cases of salmonellosis in Korea in 1 year, which is about 115 times that reported in previous years and lower than the WHO's estimation increase. From these results, microbial risk assessment is likely to be available for estimation of the number of foodborne illnesses and determination of the order of priority in food-safety management. Butthe verification methods are not established and most of the data on contamination levels of foodborne bacteria, food consumption, and dose-response relationships have not been established. In addition, the actual conditions of circulation, storage and cooking must be studied further.

  • PDF

Sulfonation of Polyamide Containing Carboxylic Acid (Carboxylic acid를 함유한 sulfonated polynmide의 제조)

  • Jeon, Jong-Young;Lee, Gi-Jo
    • Journal of Sericultural and Entomological Science
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Polyamide containing carboxylic acid was sulfonated with chlorosulfonic acid in dichloroethane under various conditions. The impact of the sulfonating agent concentration, the reaction temperature, and the reaction time on the ion exchange capacity was investigated. The mechanical and thermal properties, the contact angle, and the change of poly-dispersity were calculated for studying change of their properties. The reactions were effective, when the temperature was below $10^{\circ}C$ and the concentration of chlorosulfonic acid was below 0.05 mol. The value of ion exchange capacity was increased with reaction time. Thermal and mechanical properties were nearly unchanged according to the degree of sulfonation, but the contact angle was increased with increasing the value of ion exchange capacity.

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density (리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술)

  • Hong, Jihyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.77-92
    • /
    • 2021
  • The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.

Components in Zn Air Secondary Batteries (Zinc Air 이차전지의 구성요소)

  • Lee, Junghye;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • Components of zinc-air battery and their problems are explained. Energy density of zinc air battery is superior to other commercial ones including Li-ion batteries. Cycle life of the zinc air batteries is poor because of irreversible redox reactions on both electrodes. In order to improve the performance of the zinc air battery, catalysts, passivation, and the new structure of electrodes should be developed to optimize several reactions in an electrode. Multidisciplinary efforts, such as mechanics, corrosion science, composite materials are necessary from the beginning of the research to obtain a meaningful product.

A study on the synthesis and improvement of electrochemical properties of olivine-type phosphate cathode materials for lithium rechargeable batteries by mechanical alloying (기계적 합금화법에 의한 리튬 이차전지용 phosphate계 양극물질의 제조 및 전기화학적 특성 향상에 관한 연구)

  • 김철우;권상준;정운태;이경섭
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.216-216
    • /
    • 2003
  • 현재 상용화되어 있는 리튬 이차전지용 양극재료로는 비교적 작동전압이 높은 층상 암염구조(LiCoO$_2$, LiNiO$_2$) 및 Spinet계(LiMn$_2$O$_4$) 전이금속 산화물이 대부분 이용되고 있다 하지만 LiCoO$_2$나 LiNiO$_2$ 같은 상용화 물질은 비교적 높은 비용과, 강한 독성 때문에 많은 문제점을 가지고 있다. 또 Spinel(LiMn$_2$O$_4$)는 낮은 비용과 환경친화적인 장점에도 불구하고 Jahn-Teller 변형과 관련된 구조적 변형이 심각하기 때문에 사이클시 비가역적인 용량의 감소가 심각하다. 이러한 관점에서 전이금속보다 그 양이 풍부하고 저렴할 뿐만 아니라 독성이 없는 Olivine 구조 (LiFePO$_4$)를 갖는 phosphate계 화합물에 관심을 가지게 되었다. LiFePO$_4$는 리튬 음극과 3.4V의 방전전압을 나타내며, 170mAh/g의 이론용량을 가지고 있어, Fe-base의 장점은 물론 안정적인 결정구조 및 현재 상용화된 재료들과 비슷한 에너지 밀도를 가진다. 따라서 본 연구에서는 양극물질의 기존 두 제조법인 고상반응법과 sol-gel법으로 대표되는 제조법의 단점을 상호 보완될 수 있다고 판단되는 기계적 합금화법(Mechanical Alloying, MA)공정을 도입하여 초미세립 분말 제조에 초점을 맞추어 Olivine phosphate계 양극물질의 제조 및 전기화학적 특성을 연구하였다.

  • PDF

작업환경을 위한 TLV의 근거 - PARATHION(1)

  • Kim, Chi-Nyeon
    • 월간산업보건
    • /
    • s.247
    • /
    • pp.16-19
    • /
    • 2008
  • 파라티온(Parathion)은 폭넓고 다방면으로 사용되는 유기 인계 해충 진드기의 살충제이다. 파라티온의 첫 번째 생물학적 반응은 콜린에스테라아제 효소의 활성도 저감이다. 파라티온의 다양한 수준의 동물 노출 실험 결과, 경구 투여량 0.5-6 mg/kg 수준에서 악영향이 관찰되었다. 인간의 경우 파라티온 0.1 mg/kg 이하 수준에서는 RBC 콜린에스테라아제 효소의 활성도 감소가 나타나지 않았다. $0.2-0.8\;mg/m^3$의 작업장 노출 수준에서는 RBC 콜린에스테라아제 효소의 감소가 관찰되었다. 본 연구 결과에 근거하여 흡입 노출농도 $0.35\;mg/m^3$에 해당되는 0.05 mg/kg 이하 용량에서는 파라티온과 관련한 건강상의 생물학적 장애 증상이 유발되지 않았다. 따라서 흡입성 에어로졸과 증기상 형태로 $0.05\;mg/m^3$의 TLV-TWA가 파라티온의 작업장 노출기준으로 권고되었다. 이 노출기준은 부교감 신경의 이상과 다른 생물학적 장애 증상을 예방하는 목적에서 설정되었다. 이 수치는 인간을 대상으로 한 연구에서 얻어진 NOAEL로부터 근거를 둔 것이고, 작업자들의 RBC 콜린에스테라아제 효소의 활성도 저하를 방지하는 용량에 해당되는 것으로 예상된다. 이러한 접근은 RBC 콜린에스테라아제 효소의 억제가 단독 사용자에게서는 나타나지 않는다는 것을 확인하는데 이용되는 Biological Exposure Index의 활용과 일치된다. 인간에게 있어 파라티온 피부노출이 죽음까지도 이를 수 있다는 임상적 증세와 연관되어 있기 때문에 피부경고주석이 권고되었다. 쥐들을 대상으로 한 사료 공급 연구들에서 파라티온의 노출을 통한 명확한 종양의 발생 증가가 관찰되지 않아 비발암성 물질(A4)로 설정하였다. 파라티온의 TLV-STEL과 SEN notation을 설정하기에는 아직 충분한 데이터가 확보되어 있지 않고 있으며 파라티온의 작업 노출 모니터링에 대한 자세한 정보를 얻으려면 아세털콜린에스터라제 억제 농약의 BEI 문서들을 참고하는 것이 필요하다.

  • PDF