• Title/Summary/Keyword: 외연-내연적 유한요소법

Search Result 8, Processing Time 0.019 seconds

외연적 강소성 유한 요소법을 이용한 2차원 박판 성형 공정의 해석

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.57-62
    • /
    • 1992
  • 박판 성형 공정에서는 복잡한 실제 차체판넬을 금형설계단계에서 빠르고 효율적으로 해석하기 위해 평면 변형 문제로 취급할 수 있는 많은 국부 단면들에 대해 단면 해석방법이 쓰이고 있다. 최근에 박박이론 및 굽힘 에너지가 보강된 박막 요소에 근거한 내연적 강소성 유한 요소 해석이 많이 연구되어 왔다. 본 연구에서는 박판 성형 공정의 단면 해석을 위해 외연적 강소성 유한 요소법을 사용하였고, 접촉처리는 직접적 시행착오법을 사용하였다. 또한 본 연구의 적합성을 보이기 위해 평면 변형을 가정한 실린더형 펀치 스트레칭과 트렁크 리드 대칭 단면을 해석하였다.

Analysis of Hydroforming Process for an Automobile Lower Arm by Using Explicit and Implicit FEM (외연적과 내연적 유한요소법에 의한 자동차 로어암의 하이드로포밍 공정해석)

  • Kim, Jeong;Choi, Han-Ho;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.74-81
    • /
    • 2002
  • Recently tube hydroforming has been widely applied to the automotive industries due to its several advantages over conventional methods. In this paper, attention is paid to comparison of an implicit and an explicit finite element method widely used for numerical simulation of a hydroforming process. For an explicit FEM, a huge amount of computational time is required because of the very small time increment to solve a quasi-static problem. Hence, when an explicit FEM is used fDr a hydroforming process, it is general to convert the real problem to a virtual problem with a different processing time and mass density by appropriate scaling factor. However it is difficult to figure out how large the scaling should be adopted enough to ignore the dynamic effects and maintain the desired accuracy. In this paper, the comparison of the results obtained from both methods focus on the accuracy of the predicted geometrical shape and the stress with various scaling factors which are applied to analyze hydroforming process of an automobile lower arm.

A Study on Analysis of Polymer Extruder Process Using Finite Element Method (유한요소법을 이용한 폴리머 압출 공정해석에 관한 연구)

  • Ye Youngsoo;Kim Hongbum;Lee Jaewook;Kim Naksoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.145-155
    • /
    • 2005
  • In this study, a finite element method program code which can be accomodate boundary conditions on the complex surfaces has been developed to simulate polymer extruder processes. The analysis method includes the fractional 4-step method for efficient computation time and compact usage of memory storage to solve the velocities and the pressure values from the Navier-Stokes equation. By using the developed program which was verified with simple Poiseuille flow mixture phenomena in single-and twin-screw extruder are analyzed. It is concluded that the proposed method resulte Poiseuille Poiseuille d in fair agreement with the exact solution of simple flow and the back flow near the entrance happens in single-screw model. It is identified that the location and values of maximum pressure in the twin screw extruder model. It is expected that the Velocity field found can be used to predict the degree of mixture in the extruder barrel.

FE Analysis of Lower Arm Hydroforming by Implicit and Explicit Method (Explicit/Implicit FEM에 의한 Lower Arm Hydroforming 공정해석)

  • Kang, Young-Ho;Kim, Jeong;Chang, You-Chul;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.783-788
    • /
    • 2000
  • Hydroforming is a method for forming circular tubes. If this technology is to be applied economically, it is essential to have knowledge of the avoidance of failure cases as well as of the behavior of the tube in the tool under the compressive stress and forces that are exerted by the machine. A finite element simulation for manufacturing of lower arm from straight tubes, using the hydroforming method, was performed to investigate the effects of varying process parameters. Explicit method is used to simulate hydroforming in many cases, but that is not included flow rule. And then it needs simulation for implicit method. It was simulated by two methods, implicit and explicit, to compare the result of the hydroforming.

  • PDF

Finite Element Analysis of RC Structures considering Bond Characteristics (부착특성을 고려한 RC구조물의 유한요소 해석)

  • 한상호
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.157-164
    • /
    • 1997
  • 일반적으로 콘크리트와 철근간의 경계면을 나타내는 유한요소법에는 균열의 부근에서 발생하는 부착열화 현상을 고려하지 않고 있다. 이것은 균열 부근에서 과도한 부착을 초래하고 , 국소 변형과 균열의 진전에도 영향을 준다. 본 연구에서는 철근콘크리트 구조물의 균열부근에서 일어나는 부착거동의 변화를 고려한 비선형 부착응력-미끄럼 모델을 제안하였다. 철근과 콘크리트간의 경계면에는 링크요소를 이용하였고, 링크의 특성은 철근을 가로지르는 균열의 상태에 따라 변하도록 조정하였다. 균열의 형성상태를 정량화하고, 부착거동을 두 포락선 1) 균열로부터 충분히 떨어진 위치에서의 부착상태를 모델링한 외연포락선, 2)횡균열면에 있어서의 부착상태를 모델링한 내연포락선의 사이에 변이시키기 위하여 비국소적 손상도 개념을 도입하였다. 이 방법의 유효성을 알아보기 위하여 편재하중을 받는 T형 교각의 실험 및 해석결과를 제시하였다. 제안된 모델의 결과를 실험결과와 비교하여 본 모델의 유용성을 검증하였다.

A Study on the Stability of Explicit FE Analysis in the Sheet Metal Forming Analysis (박판 성형에서의 외연적 유한요소법의 안정성과 내연적 해석법과의 비교)

  • 심현보;전성문;손기찬
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.293-303
    • /
    • 2000
  • Recent developments of Fe technology make it possible to apply CAD/CAE/CAM techniques successfully to the stamping die design among the automotive parts industries. Those successful applications are greatly attributable to the development of commercial S/W. Up to now most commercial S/W for the analysis of sheet metal forming is based on the dynamic explicit algorithm. The main characteristics of dynamic explicit algorithm is that there is no convergence problem if the time increment is taken less than the stability limit. The stability of the analysis is guaranteed in the commercial code, since the adequate time increment is computed from the so called "Courant Condition". However excess computing time is often pointed out in the dynamic explicit analysis according to the characteristics of process parameters taken. In the study, various parameters that may affect the stability and the method how to improve computational efficiency of analysis have been investigated.estigated.

  • PDF

A Study on Virtual Manufacturing for Total Auto-Body Panel Stamping Processes (차체판넬 스탬핑공정을 위한 가상생산에 관한 연구)

  • Jeong, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1499-1512
    • /
    • 2000
  • The dynamic explicit finite element method and the static implicit finite element method are applied effectively to analyze total auto-body panel stamping processes, which include the forming stage , the trimming stage and the spring-back stage.\The explicit time integration method has better merits in the forming stage including highly complicated three-dimensional contact conditions. On the contrary, the implicit time integration method is better for analyzing spring-back since the complicated contact conditions are removed and the computing time to get the final static state is short. In this work, brief descriptions of the formulation and the factor study are presented. Further, the simulated results for the total auto-body panel stamping processes are shown and discussed. The formability and the weld line movement in stamping with Tailor Welded Blanks were investigated through QTR-OTR-FRT.

Influence of Various Parameter for Nonlinear Finite Element Analysis of FRP-Concrete Composite Beam Using Concrete Damaged Plasticity Model (콘크리트 손상 소성모델을 이용한 FRP-콘크리트 합성보의 비선형 유한요소해석에서 여러 변수들의 영향)

  • Yoo, Seung-Woon;Kang, Ga-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.697-703
    • /
    • 2017
  • This paper examines the flexure behavior of FRP-concrete composite structure that can replace conventional reinforced concrete structure types. In order to investigate the structural performance and behavioral characteristics in numerical analysis means, ABAQUS, a general purpose finite element analysis program, was utilized for nonlinear finite element analysis, and the various variables and their influences were analyzed and compared with experimental results to suggest values optimized to this composite structure. The concrete damage plasticity model and Euro code for concrete were used. In the implicit finite element analysis, the convergence was ambiguous when geometrical and material nonlinearity were large, so the explicit finite element analysis used in this study was deemed to be appropriate. From the comparison with the experiment about concrete damaged plasticity model, 20mm for the mesh size, $30^{\circ}$ for the dilation angle, $100Nmm/mm^2$ for the value of fracture energy, 0.667 for Kc value, and the consideration of damage parameter were suggested believed to be appropriate. The numerical model suggested in this study was able to imitate the ultimate load and cracking pattern very well; therefore, it is expected to be utilized in research of various new material composite structures.