• Title/Summary/Keyword: 외연유한요소해석

Search Result 74, Processing Time 0.03 seconds

An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit(AGT) Vehicle made of Sandwich Composites (샌드위치 복합재 적용 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 특성 평가 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dea-Hwan
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2008
  • This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.

Analytical Study for the Safety Enhancement of the Bird Strike to Small Aircraft using a Crushable Foam (Crushable Foam을 이용한 소형항공기 조류충돌 안전성 향상에 관한 해석적 연구)

  • Park, Ill-Kyung;Choi, Ik-Hyun;Ahn, Seok-Min;Lee, Sang-Jong;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The Bird strike to small aircraft has not been an issue because of it's low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet) and (light time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety enhancement concept using a crushable foam for the bird strike to small aircraft wing leading edge, and the evaluation about the safety of the bird strike to small aircraft are proposed using the explicit finite element analysis.

  • PDF

Explicit Nonlinear Finite Element Analysis for Flexural/Shear Behavior of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 휨/전단거동에 관한 외연적 비선형 유한요소해석 연구)

  • Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.771-776
    • /
    • 2020
  • In this study, the flexural/shear behavior characteristics of perfobond FRP-concrete composite beams using an FRP plate with perforated webs as formwork and reinforcement are analyzed through an analytical method. Compared with the existing experimental results, we have proved its usefulness and use it in future practice. When the nonlinearity is very large in this case, the nonlinear finite element analysis by an explicit method will be effective. The concrete damage plasticity (CDP) model adopted in this study is considered to be able to adequately simulate the nonlinear behavior of concrete, and the determination of several variable factors required in the model is compared with the experimental results and values used in the study. This recommendation will require review and adjustment for more diverse cases. The effect of the perfobond of the composite beam with perforated web is considered to be somewhat effective in terms of securing the initial stiffness, but in the case of the apex, it is considered that the cross-sectional loss and the effect of improving the bonding force should be properly arranged. The contact problem, such as slipping of the FRP plate and concrete, is considered to be one of the reasons that the initial stiffness is slightly larger than the test result, and the slightly difference from the experimental results is attributed to the separation problem between concrete and FRP after the peak.

Parallel Contact Treatment and Parallel Performance of Impact Simulation Based on Lagrangian Scheme (Lagrangian 기법에 의한 충돌 해석 시 접촉처리의 병렬화 및 병렬효율 평가)

  • Back, Seung-Hoon;Kim, Seung-Jo;Lee, Min-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1447-1454
    • /
    • 2006
  • The evaluation of parallel performance of a high speed impact simulation is not an easy task because not only the development of parallel explicit code is difficult but also a large number of processors is not easily accessible. In this paper, the parallel performance of a new Lagrangian FEM impact code carried out on cluster supercomputer has been described in high speed range. In the case of metal sphere impacting to oblique plate, the overall speed-up continuously increases even up to 128 CPUs. Investigation of elapsed time of each part reveals that most of the inefficiency comes from the load imbalance of contact.

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes (2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화)

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF

A Study on the Stability of Explicit FE Analysis in the Sheet Metal Forming Analysis (박판 성형에서의 외연적 유한요소법의 안정성과 내연적 해석법과의 비교)

  • 심현보;전성문;손기찬
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.293-303
    • /
    • 2000
  • Recent developments of Fe technology make it possible to apply CAD/CAE/CAM techniques successfully to the stamping die design among the automotive parts industries. Those successful applications are greatly attributable to the development of commercial S/W. Up to now most commercial S/W for the analysis of sheet metal forming is based on the dynamic explicit algorithm. The main characteristics of dynamic explicit algorithm is that there is no convergence problem if the time increment is taken less than the stability limit. The stability of the analysis is guaranteed in the commercial code, since the adequate time increment is computed from the so called "Courant Condition". However excess computing time is often pointed out in the dynamic explicit analysis according to the characteristics of process parameters taken. In the study, various parameters that may affect the stability and the method how to improve computational efficiency of analysis have been investigated.estigated.

  • PDF

Multi-stage Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio by an Explicit Elasto-Plastic Finite Element Method (외연적 유한요소법을 이용한 세장비가 큰 타원형 컵 성형공정의 다단계 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • Finite element analysis is carried out for simulation of the multi-stage elliptic cup drawing process with the large aspect ratio. The analysis incorporates with shell elements for an elasto-plastic finite element method with the explicit time integration scheme. For the simulation, LS-DYNA3D is utilized for its wide capability of solving forming problems. The simulation result shows that the non-uniform drawing ratio at the elliptic cross section ad the small shoulder radius cause failure such as tearing and wrinkling. The result suggests the guideline to modify the tool shape for prevention of the failure during the drawing process.

  • PDF

The Influence of the Number of Drawbead on Blank Forming Analysis (블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구)

  • 정동원;이상제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

A Program Development for Dynamic Characteristics of Material in SHPB with Explicit Finite Element Method (홉킨슨 압축봉에서의 동적 재료특성에 관한 수치해석적 연구)

  • Lee, Seung-U;Hong, Seong-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1438-1445
    • /
    • 2000
  • To determine dynamic characteristics of materials, a program was developed under base of stress wave propagation theory for SHPB with explicit finite element method. Through the program, all kinds of quasi-static stress-strain curves can be directly converted to dynamic stress-strain curves at any strain rate. This simulation results were compared with experimental results in the references and they are in a good agreement with each other.

Crashworthiness Characteristic Analysis of Composite Non-step Bus (복합제 초 저상 굴절버스의 충돌 특성 해석)

  • Kim, Yu-Seok;Choi, Jung-Hoon;Cho, Jin-Rae;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.756-761
    • /
    • 2007
  • This papered is concerned with the crashworthiness characteristics analysis of the non-step bus when it is crashed or roll-over analysis. Computer simulations is implemented using LS-Dyna explicit code which can effectively analysis dynamic response with the lapse of time. We construct a FEM model of the non-step bus under development according to the safety rules used in Europe for composite non-step buses. The crash energy and absorption rate are evaluated to understand crashworthiness characteristic of the composite non-step bus. Body deformation is also examined whether the survival space is secured for passengers.

  • PDF