DOI QR코드

DOI QR Code

Explicit Nonlinear Finite Element Analysis for Flexural/Shear Behavior of Perfobond FRP-Concrete Composite Beam

퍼포본드 FRP-콘크리트 합성보의 휨/전단거동에 관한 외연적 비선형 유한요소해석 연구

  • Yoo, Seung-Woon (Department of civil engineering, Catholic Kwandong University)
  • 유승운 (가톨릭관동대학교 토목공학과)
  • Received : 2020.08.11
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

In this study, the flexural/shear behavior characteristics of perfobond FRP-concrete composite beams using an FRP plate with perforated webs as formwork and reinforcement are analyzed through an analytical method. Compared with the existing experimental results, we have proved its usefulness and use it in future practice. When the nonlinearity is very large in this case, the nonlinear finite element analysis by an explicit method will be effective. The concrete damage plasticity (CDP) model adopted in this study is considered to be able to adequately simulate the nonlinear behavior of concrete, and the determination of several variable factors required in the model is compared with the experimental results and values used in the study. This recommendation will require review and adjustment for more diverse cases. The effect of the perfobond of the composite beam with perforated web is considered to be somewhat effective in terms of securing the initial stiffness, but in the case of the apex, it is considered that the cross-sectional loss and the effect of improving the bonding force should be properly arranged. The contact problem, such as slipping of the FRP plate and concrete, is considered to be one of the reasons that the initial stiffness is slightly larger than the test result, and the slightly difference from the experimental results is attributed to the separation problem between concrete and FRP after the peak.

본 연구에서는 천공된 웨브를 가진 FRP판을 거푸집 및 보강재로 활용한 퍼포본드 FRP-콘크리트 합성보의 휨/전단 거동 특성을 해석적인 방법으로 거동특성을 파악한다. 기존 실험결과와 비교하여 그 유용성을 입증하고 차후 실무에 활용하고자 한다. 본 사례와 같이 비선형성이 매우 큰 경우에는 외연적 방법에 의한 비선형 유한요소해석이 효과적일 것이다. 본 연구에서 채택한 콘크리트손상소성(concrete damage plasticity: CDP)모델은 콘크리트의 비선형적 거동을 적절히 모사할 수 있는 것으로 사료되며, 모델에서 필요한 여러 변수 인자의 결정은 실험결과와 비교하여 연구에서 사용한 값들을 추천하나, 보다 다양한 케이스에 대한 검토 및 조정이 필요할 것이다. 웨브가 천공된 합성보의 퍼포본드의 효과는 초기강성의 확보 측면에서 다소 효과가 있는 것으로 판단되나 정점에서의 경우 단면 손실과 결합력 증진 효과를 적절히 안배해야 할 것으로 사료된다. FRP 판과 콘크리트의 미끄러짐 등의 접촉문제는 초기 강성이 실험결과보다 다소 크게 나타난 이유 중에 하나라 판단되며 정점 이후 콘크리트와 FRP 의 분리문제 등이 실험결과와 다소 차이를 보인 원인으로 생각한다.

Keywords

References

  1. L.C. Bank, Composites for construction: Structural design with FRP materials, John Wiely & Sons, NJ, USA, 2006. DOI: http://dx.doi.org/10.1002/9780470121429
  2. L.C. Bank, M.G. Oliva, H.U. Bae, J.W. Barker, S.W. Yoo, "Pultruded FRP plank as formwork and reinforcement for concrete members", Advances in Structural Engineering, Vol. 10, No. 5, pp. 525-536, 2007. DOI: http://dx.doi.org/10.1260/136943307782417681
  3. B. Tang, W. Podolny, J. Hooks, "A good start for fiber-reinforced polymer composite material bridges", American Society of Civil Engineers, Materials Engineering Congress, pp.324-331, 1999.
  4. S.W. Yoo, "An experimental study for flexure/shear failure behavior of composite beam with GFRP plank used as a permanent formwork and cast-in-place high strength concrete", Journal of The Korea Academia -Industrial Cooperation Society, Vol. 16, No. 9, pp. 4245-4252, 2015. DOI : http://dx.doi.org/10.5762/KAIS.2015.16.6.4245
  5. S.W. Yoo, J.S. Yoo, "Influence of various parameter for bending/shear behavior analysis of FRP composite beam using concrete damaged plasticity model", Journal of Korean Soc. Adv. Comp. Struc., Vol. 10, No. 4, pp. 1-7, 2019. DOI : http://dx.doi.org/10.11004/kosacs.2019.10.4.001
  6. K.W. Kim, H.S. Jeong, H.G. Beom, "Transient dynamic analysis of a patterned tire rolling over a cleat with and explicit finite element program", Transactions of the Korean Society of Automotive Engineers, Vol. 11, No. 6, pp. 164-170, 2003.
  7. J. Lubliner, J. Oliver, S. Oller, E. Onate, "A plastic-damage model for concrete", International Journal of Solids and Structures, Vol. 25, No. 3, pp. 299-326, 1989. DOI: http://dx.doi.org/10.1016/0020-7683(89)90050-4
  8. Dassault Systems, Abaqus Version 6.14, Dassault Systems, 2014.
  9. A.S. Genikomsou, M.A. Polak, "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in Abaqus", Engineering Structures, Vol. 98, pp. 38-48, 2015. DOI: http://dx.doi.org/10.1016/j.engstruct.2015.04.016
  10. Eurocode 2, Design of Concrete Structure, Belgium, 2004.
  11. CEB-FIP model code, Thomas Telford, 1993.
  12. P. Kmiecik, M. Kaminski, "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Archives of Civil and Mechanical Engineering, Vol. 11, No. 3, pp. 623-636, 2011. DOI: http://dx.doi.org/10.1016/S1644-9665(12)60105-8