• Title/Summary/Keyword: 외부유동

Search Result 359, Processing Time 0.028 seconds

Determination of the Initial Tendon Force using Rating Factor Equation in Composite Girders Strengthened with External Tendons (외부 긴장재로 보강된 강합성보의 내하율 산정식을 이용한 초기 긴장력 결정)

  • Choi, Dong Ho;Chung, Sang Hwan;Yoo, Dong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.527-536
    • /
    • 2005
  • A method of reinforcement using external tendons has been found to be one of the effective techniques of reinforcement and its application is increasing. In this paper, the method to calculate the initial tendon force is proposed for the improvement of load-carrying capacity in existing steel-concrete composite bridges. An equation for the increment of tendon force was derived for tendon configurations and live load types, and the effect of reinforcement in a composite beam was numerically studied. The method to calculate the number of tendon and initial tendon force was presented by proposing the new method to calculate the rating factor, which considers the increment of tendon force. The method was shown to be effective for an existing steel-concrete bridge.

Strengthening Design by External Pre-tensioning and Post-tensioning Methods for Steel-concrete Composite Girders using Rating Factor (내하율을 이용한 강합성보의 외부 프리텐션과 포스트텐션 보강 설계)

  • Choi, Dong-Ho;Yoo, Dong-Min;Jeong, Gu-Sang;Park, Kyung-Boo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.123-134
    • /
    • 2007
  • A method to determine the initial force of external tendon is proposed to improve the load carrying capacity in existing steel-concrete composite bridges. This method is applied to tensioning external tendons prior to and after concrete replacement for strengthening composite girders. A procedure to determine the number of tendon and initial tendon force is described with the proposed rating factor, which considers the increment of tendon force due to live loads. The method is applied to the improvement of rating factor in an existing composite bridge and its validity is confirmed.

Coastal Water Circulation Modeling with Water Exchange through Permeable Dike (투수성 호안제체을 통한 해수교환을 고려한 해수유동 모의)

  • Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.301-307
    • /
    • 2006
  • In coastal zones with high tidal ranges like Korean western coast, port construction and reclamation projects have been increased. Most of the projects include sea-dyke construction. In the sea-dykes constructed to protect sea water intrusion, sea water was exchanged through the permeable dykes. The water level inside the area enclosed by the dykes changes with time due to tidal action of outer sea, but the tidal range is smaller than that of outside because of strong friction. In numerical modeling of coastal circulation the water exchange through the dykes has been neglected, which has produced inaccurate estimation neglecting the water exchange. In this study a method, which can consider water exchange through sea-dyke, was suggested and the modeling accuracy was improved. A groundwater theory was utilized to explain the phenomena.

Investigation of Skin Friction Reduction Mechanism of Outer-Layer Vertical Blades Using POD Analysis (POD 기법을 이용한 경계층 외부 수직날의 마찰저항 저감 기구에 관한 관측)

  • An, Nam Hyun;Park, Seong Hyeon;Chun, Ho Hwan;Lee, Inwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.567-575
    • /
    • 2013
  • A POD analysis based on time-resolved PIV measurements in a circulating water channel has been conducted to identify the skin friction reduction mechanism of outer-layer vertical blades. A recent PIV measurement indicated 2.73% and 7.95% drag reduction in the blade plane and the blade-in-between plane, respectively. In the present study, the influence of vertical blades array upon the characteristics of the turbulent coherent structures was analyzed by the POD method. It is observed that the vortical structures are cut and deformed by the blades array and that their temporal evolution is strongly associated with the skin-friction drag reduction mechanism in the turbulent boundary layer flow.

Passive autocatalytic recombiner guide structure considering ambient flow (분위기 유동을 고려한 PAR 가이드 구조에 관한 연구)

  • Ryu, Myeong-Rok;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.302-309
    • /
    • 2017
  • If a hydrogen explosion occurs in a containment building, its multiplex defense wall may be destroyed and a large amount of radioactive material may be released. The hydrogen occurred interacting with melting fuel rods must be effectively controlled and removed. however, the countermeasures for reducing explosion risk are difficult to carry out, due owing to the various variety of accident scenarios causes and the irregularity of hydrogen distribution and behavior. In this study, We examine the guide structures while considering the ambient flows, in order to improve the efficiency of PAR the widely used Passive Autocatalytic Recombiner(PAR). We simulate the fluid behavior and the hydrogen reduction rate were simulated when a guide is attached to the two-step catalyst PAR. For an upward flow, the consisting of a height of 150mm, a gap of 0mm, and a performs $60^{\circ}$ showed the best. In contrast, for a sideways flow, a consisting of the height of 150mm, a gap of 100mm, and a performs $60^{\circ}$ showed the best in the case of side ward flow. for a downward flow, a consisting of the height of 50mm and a directly attached guide produce the best in the case of down ward flow results.

Study on Flow Analysis of Hot Gas Valve with Pintle (핀틀이 적용된 고온 가스 밸브 유동장 해석 기법에 관한 연구)

  • Lee, Kyungwook;Heo, Seonuk;Kwon, Sejin;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.19-25
    • /
    • 2015
  • Numerical simulations of the hot gas valve with a pintle have been conducted in order to investigate the effect of numerical methods and computational domains. The grid sensitivity is checked by varying the grid number from 100,000 to 1,700,000. The existence of ambient region doesn't make the significant differences of the flow-field and the temperature distribution. Three turbulence models are adopted to figure out its influence on the thrust and temperature distribution: Spallart-Allmaras, RNG $k-{\varepsilon}$, $k-{\omega}$ SST. The thrusts of the hot gas valve are almost same in all cases of the simulation, however, there are about 5% difference in the temperature distribution. With the ambient region, the difference are observed in the temperature distribution with respect to the number of grids.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Hemodynamic Analysis of Blood Flows in the Extraembryonic Blood Vessels of Chicken Embryos (유정란 태아외부혈관 내부 혈액유동에 대한 혈류역학적 연구)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.6-9
    • /
    • 2008
  • Analyzing the characteristics of blood flow in the blood vessels is very important to diagnose the circulatory diseases. In order to investigate the hemodynamic characteristics in vivo, the measurements of blood flows inside the extraembryonic arterial and venous blood vessels of chicken embryos were carried out using an in vivo micro-PIV technique. The circulatory diseases are closely related with the formation of abnormal hemodynamic shear stress regions, thereby it is important to get blood velocity and vessel's morphological information according to the vessel configuration and the flow conditions. In this study, the flow images of RBCs in blood vessels were obtained using a high-speed CMOS camera with a spatial resolution of approximately 14.6${\mu}$m${\times}$14.6${\mu}$m in the whole circulation network of blood vessels. The blood flows in the veins and arteries show steady laminar and unsteady pulsatile flow characteristics, respectively. The mean blood flows merged (in veins) and bifurcated (in arteries) smoothly into the main blood vessel and branches, respectively, without any flow separation or secondary flow which accompanying large variation of shear stress. Vorticity was high in the inner regions for both types of vessels, where the radius of curvature varied greatly. The instantaneous flows in the arterial blood vessels showed noticeable pulsatility due to the heart beat, and the main features of the velocity waveforms, including pulsatile shape, retrograde flow, mean velocity, maximum velocity and pulsatile frequency, were significantly dependent on the pulsatile condition which dominates the arterial blood flow. In near future, these in vivo experimental results of blood flow measured in various extraembryonic blood vessels would be very useful to understand the hemodynamic characteristics of human blood flows and various blood flow researches for clinically useful hemodynamic discoveries as well.

  • PDF

Numerical Study of Forced Convection Nanofluid in Double Pipe (이중관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Lim, Yun-Seung;Choi, Hoon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.147-156
    • /
    • 2019
  • Numerical study was performed to investigate the convective heat transfer of Al2O3/water nanofluid flowing through the concentric double pipe counterflow heat exchangers. Hot fluid flowing through the inner pipe transfers its heat to cooling fluid flowing in the outer pipe. Effects of important parameters such as hot and cold volume flow rates, fluid type in the outer and inner pipes, and nanoparticles concentration on the heat transfer and flow characteristics are investigated. The results indicated that the heat transfer performance increases with increasing the hot and cold volume flow rates, as well as the particle concentrations. When both outer and inner pipes are nanofluids with 8% nanoparticle volume concentration, nanofluids showed up to 17% better heat transfer rate than basic fluids. Also, the average heat transfer coefficient of the base fluid for annulus-side improved by 31%. Approximately 20% enhancement in the heat exchanger effectiveness can be achieved with the addition of 8% alumina particles in base fluid. But, addition of nanoparticles to the base fluid enhanced friction factor by about 196%.

An Analysis of Unsteady 2-D Heat Transfer of the Thermal Stratification Flow inside Horizontal Pipe with Electrical Heat Tracing (Heat Tracing이 있는 수평배관 내부 열성층 유동의 비정상 2차원 열전달 해석)

  • 정일석;송우영
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.119-128
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external heating on the thermal stratification flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt number distributions are analyzed under heating conditions. The numerical results of this study show that the maximum dimensionless temperature difference between hot and cold sections of the inner wall of pipe is 0.424 at dimensionless time of 1,500 and the thermal stratification phenomenon disappears at about dimensionless time of 9,000.

  • PDF