• Title/Summary/Keyword: 외바퀴 로봇

Search Result 16, Processing Time 0.028 seconds

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

Balancing Control of a Single-wheel Mobile Robot from a Stick-Model Point of View (스틱 모델 관점에서의 외바퀴 로봇 밸런싱 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1327-1328
    • /
    • 2015
  • 본 논문에서는 스틱 모델을 사용하여 외바퀴 로봇의 수직 방향에서 생기는 파라메트릭 진동을 시뮬레이션 분석하고, 분석된 결과를 바탕으로 제어 법칙을 유도한 다음, 실험을 통해 성능을 검증한다. 실험에 활용된 외바퀴 로봇은 수평 방향에 대해서는 비례미분제어기를 사용하고, 수직 방향에 대해서는 진동제어기를 활용한다.

  • PDF

Balancing Control of a Single-wheel Mobile Robot by Compensation of a Fuzzified Balancing Angle (각도 오프셋의 퍼지보상을 통한 외바퀴 이동 로봇의 균형제어)

  • Ha, Minsu;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, a fuzzy control method is used for balancing a single-wheel robot. A single-wheel robot controlled by the PD control method becomes easily unstable since the flywheel tends to lean against one direction. In the previous research, we have used the gain scheduling method. To remedy this problem, in this paper, a fuzzy compensation technique is proposed to compensate for the balancing angle. The fuzzy control method compensates offset values at the balancing angle to prevent the gimbal from falling against one direction. Experimental studies of the balancing control performance of a single-wheel mobile robot validate the proposed control method.

Analysis of a Time-constant Effect in the Q-filter for Designing a Disturbance Observer: Balancing Control of a Single-wheel Robot (외란관측기 설계를 위한 Q필터 시정수 영향 분석 : 외바퀴 로봇의 균형 제어 응용)

  • Lee, Sangdeok;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.123-129
    • /
    • 2016
  • Disturbance Observer(DOB) based control is considered for the purpose of the balancing performance enhancement in a single-wheel robot. Design of DOB can be folded into two parts, the inverse model of the plant and the Q-filter. The inverse model is derived from the inverted stick model and a Q-filter is designed to stabilize the inverse model. In this paper, a Q31 filter is designed and its effect is evaluated by experimental studies. The time constant provides a complimentary characteristic between the disturbance suppression and the sensor noise immunity. Therefore, suitable selection of the time-constant must be considered. Comparative experiments are conducted to investigate the control performances when three different Q filters are respectively applied in the DOB. Through the analysis of the experimental results, a time constant is designed to have a proper value in the design of DOB for balancing control of a single-wheel robot.

Experimental Studies of Control of a One-wheel Robot by Modifying Design and Control Method (설계 및 제어 개선을 통한 외바퀴 로봇의 제어에 대한 실험적 연구)

  • Park, June Hyung;Ha, Min Soo;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.210-217
    • /
    • 2014
  • This paper presents experimental studies on controlling one-wheel robot, GYROBO. The previous one has the problem of falling down because the inside gimbal leans against one direction to make it balancing. This structural problem has been solved by redesigning the system. Gains obtained through experimental tasks are used as a gain scheduling method so that GYROBO is more stabilized. A line trajectory following control task is performed to test the driving control as well.

Balancing Control of a Unicycle Robot using Ducted Fans (덕티드 팬을 이용한 외바퀴 자전거로봇의 균형 제어)

  • Lee, Jong Hyun;Shin, Hye Jung;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.895-899
    • /
    • 2014
  • This paper presents the balancing control of a unicycle robot using air power. Since the robot has one wheel to move forward and backward, the balancing control is quite challenging. To control the balancing angle, the accurate angle estimation by a tilt and a gyro sensor is required a priori. A complementary filter is implemented to eliminate the defects of two sensors and to fuse together to estimate an accurate balancing angle. The optimal design of air ducts is found empirically. Experimental studies of the balancing control of a unicycle robot confirm that the robot is well regulated without falling down.

Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect (외바퀴 로봇의 역자이로 효과에 의한 바디 모션과 김벌 모션의 실험을 통한 관계 분석)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1064-1069
    • /
    • 2015
  • Control Moment Gyro (CMG) has been used as an indirect actuator of a single-wheel robot system GYROBO, developed at Chungnam National University. The flip motion of the gimbal system produces the gyroscopic motion onto the body system while the body motion also produces the gyroscopic motion onto the gimbal system inversely. In this paper, the intuitive equation of the inverse gyroscopic effect is derived as the direct relation between the rate of the body system and the rate of the gimbal system. Experiments on the inverse gyroscopic effect under the chaotically generated disturbance are conducted. Experimental data are approximated by a linear equation using the least square method.

Implementation and Balancing Control of One-Wheel Robot, GYROBO (외바퀴 구동 GYROBO의 제작 및 밸런싱 제어 구현)

  • Kim, Pil-Kyo;Park, Junehyung;Ha, Min Soo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.501-507
    • /
    • 2013
  • This paper presents the development and balancing control of GYROBO, a one wheeled mobile robot system. GYROBO is a disc type one wheel mobile robot that has three actuators, a drive motor, a spin motor, and a tilt motor. The dynamics and kinematics of GYROBO are analyzed, and simulation studies conducted. A one-wheeled robot, GYROBO is built and its balancing control is performed. Experimental studies of GYROBO's balancing abilities are conducted to demonstrate the gyroscopic effects generated by the spin and tilt angles of a flywheel.

Rotation control for the Yaw-direction of Unicycle Robot (외바퀴 로봇의 Yaw 방향 회전 제어)

  • Hwang, Jong-Myung;Bae, Dong-Suck;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.331-337
    • /
    • 2008
  • The field of robots is being widely accepted as a new technology today. Many robots are produced continuously to impart amusement to people. Especially the robot which operates with a wheelbarrow was enough of a work of art to arouse excitement in the audiences. All the wheelbarrow robots share the same technology in that the direction of roll and pitch are acting as balance controllers, allowing the robots to maintain balance for a long period by continuously moving forward and backward. However one disadvantage of this technology is that they cannot avoid obstacles in their way. Therefore movement in sideways is a necessity. For the control of rotation of yawing direction, the angle and direction of rotation are adjusted according to the velocity and torque of rotation of a motor. Therefore this study aimed to inquire into controlling yawing direction, which is responsible for rotation of a robot. This was followed by creating a simulation of a wheelbarrow robot and equipping the robot with a yawing direction controlling device in the center of the body so as to allow sideway movements.

  • PDF

Control of a Unicycle Robot using a Non-model based Controller (비 모델 외바퀴 로봇의 제어)

  • An, Jae-Won;Kim, Min-Gyu;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.