• Title/Summary/Keyword: 완충재

Search Result 329, Processing Time 0.025 seconds

Effects of Different Plasticizers on Some Properties of Biodegradable Starch-based Foams

  • Cha, Jea-Yoon
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.143-150
    • /
    • 2003
  • 전분 완충재의 물리적, 기계적 특성을 개선하기 위한 노력들이 많이 이루어지고 있지만 기존의 플라스틱 완충재와 비교하면 더 많은 노력이 요구되어진다. 그래서 본 연구에서는 전분 완충재의 물리적 기계적 특성에 대한 유연제(plasticizers)와 첨가제(additives)의 영향을 규명하였다. 전분과 합성수지 그리고 여러 유연제 또는 첨가제를 혼합한 뒤 Brabender사의 일축 압출기를 이용하여 여러 축속도(60~120 rpm)에서 압출 가공한 후 물리적, 기계적 특성을 조사하였다. 전분 완충재의 밀도(bulk density)와 압축성(bulk compressibility)은 혼합물에서 물의 비율이 증가함에 따라 증가하였지만, 복원성(bulk resiliency)은 조금 감소하였다. 측정되어진 전분 완충재의 특성은 변형전분(hydroxypropylated starch)의 사용으로 향상되었다. 또한, glycerol, glycerol monostearate 그리고 alkylglucosides의 첨가도 전분 완충재의 밀도와 압축성을 증가시켰다. 염화철(II) 0.5%을 포함한 전분 완충재는 첨가제를 포함하지 않은 전분 완충재에 비하여 밀도 42%와 압축성 58%가 각각 감소한 반면, 복원성은 13%포인트 증가하였다. 변형전분과 염화철(II)이 첨가된 전분 완충재는 기존의 플라스틱 완충재에 비하여 밀도와 압축성은 떨어지지만, 대체 사용되어질 수 있는 것으로 판단되었다.

최근 완충재 개발동향

  • 한국포장협회
    • The monthly packaging world
    • /
    • s.6
    • /
    • pp.46-51
    • /
    • 1993
  • 최근 대표적인 완충재로 사용되어 오던 EPS(발포폴리스티렌)의 사용이 규제됨에 따라 환경적응형 완충재의 중요성이 더욱 강조되고 있다. 완충재는 수송시 제품에 가해지는 충격을 줄여 제품을 최대한 보호하는 역할을 한다. 일반적으로 사용되고 있는 플라스틱 완충재로는 폴리에틸렌 폼(polyethylene foam), 폴리프로필렌 폼(polypropylene foam), 폴리우레탄 폼(polyuretane)등이 있고 종이를 소재로 한 형태도 있다. 이 글에서는

  • PDF

Establishing the Concept of Buffer for a High-level Radioactive Waste Repository: An Approach (고준위폐기물처분장의 완충재 개념 도출: 접근방안)

  • Lee, Jae Owan;Lee, Minsoo;Choi, Heuijoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The buffer is a key component of the engineered barrier system in a high-level radioactive waste (HLW) repository. The present study reviewed the requirements and functional criteria of the buffer reported in literature, and also based on the results, proposed an approach to establish a buffer concept which is applicable to an HLW repository in Korea. The hydraulic conductivity, radionuclide-retarding capacity (equilibrium distribution coefficient and diffusion coefficient), swelling pressure, thermal conductivity, mechanical properties, organic carbon content, and illitization rate were considered as major technical parameters for the functional criteria of the buffer. Domestic bentonite (Ca-bentonite) and, as an alternative, MX-80 (Na-bentonite) were proposed for the buffer of an HLW repository in Korea. The technical specifications for those proposed bentonites were set to parameter values that conservatively satisfy Korea's functional criteria for the Ca-bentonite and Swedish criteria for the Na-bentonite. The thickness of the buffer was determined by evaluating the means of shear behavior, radionuclide release, and heat conduction, which resulted in the proper buffer thickness of 0.25 to 0.5 m. However, the final thickness of the buffer should be determined by considering coupled thermal-hydraulic-mechanical evaluation and economics and engineering aspects as well.

Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials (완충재 설계시 고려사항 및 고기능 완충재 연구 현황)

  • Lee, Gi-Jun;Yoon, Seok;Kim, Taehyun;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.59-77
    • /
    • 2022
  • Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be reduced. First of all, this study tries to analyze the criteria for thermal-hydraulic-mechanical performance of the buffer materials and to investigate the researches regarding the enhanced buffer materials with improved thermal conductivity. First, the thermal conductivity should be as high as possible and is affected by dry density, water content, temperature, mineral composition, and bentonite type. the organic content of the buffer material can have a significant effect on the corrosion performance of a canister, so the organic content should be low. In addition, hydraulic conductivity of the buffer material should be less than that of near-field rock and swelling pressure should be appropriate for buffer materials to function properly. For the development of enhanced buffer materials, additives such as sand, graphite, and graphite oxide are typically used, and a thermal conductivity can be greatly improved with a very small amount of graphite addition compared to sand.

Hydrothermal Behaviors and Long-term Stability of Bentonitic Buffer Material (벤토나이트 완충재의 열수거동 및 장기건전성 연구)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • In hydrothermal reaction tests, smectite-to-illite conversion was identified using a domestic bentonite which is favorably considered as a buffer material, and its dependency on various hydrothermal conditions was investigated. The analysis results of the XRD and Si concentration indicated that the smectite-to-illite conversion was a major process of bentonite alteration under the hydrothermal conditions. The temperature, potassium concentration in solution, and pH were observed to significantly affect the smectite-to illite conversion. A model of conversion reaction rate was suggested to evaluate the long-term stability of smectite composing a major constituent of bentonitic buffer. It was expected from the evaluation results that the smectite would keep its integrity for very long disposal time under a normal condition, whitens it might be converted to illite by 50 percent after over $5{\times}10^4$ year of disposal time under a conservative condition and consequently lose its swelling capacity as a buffer material of a repository.

  • PDF

A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 열팽창계수 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2018
  • A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste. Since the heat generated from spent nuclear fuel in a disposal canister is released to the surrounding buffer materials, the thermal properties of the buffer material are very important in determining the entire disposal safety. Especially, since thermal expansion can cause thermal stress to the intact rock mass in the near-field, it is very important to evaluate thermal expansion characteristics of bentonite buffer materials. Therefore, this paper presents a thermal expansion coefficient prediction model of the Gyeongju bentonite buffer materials which is a Ca-bentonite produced in South Korea. The linear thermal expansion coefficient was measured considering heating rate, dry density and temperature variation using dilatometer equipment. Thermal expansion coefficient values of the Gyeongju bentonite buffer materials were $4.0{\sim}6.0{\times}10^{-6}/^{\circ}C$. Based on the experimental results, a non-linear regression model to predict the thermal expansion coefficient was suggested and fitted according to the dry density.

Effect of Thermal Properties of Bentonite Buffer on Temperature Variation (벤토나이트 완충재의 열물성이 온도 변화에 미치는 영향)

  • Kim, Min-Jun;Lee, Seung-Rae;Yoon, Seok;Jeon, Jun-Seo;Kim, Min-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • A buffer in a geological disposal system minimizes groundwater inflow from the surrounding rock and protects the disposed high-level waste (HLW) against any mechanical impact. As decay heat of a spent fuel causes temperature variation in the buffer that affects the mechanical performance of the system, an accurate estimation of the temperature variation is substantial. The temperature variation is affected by thermal and material properties of the system such as thermal conductivity, density and specific heat capacity of the buffer, and thus these factors should be properly included in the design of the system. In particular, as the thermal properties are variable depending on the density and water content of the buffer, consideration of the effects should be included in the analysis. Hence, in this study, a numerical model based on finite element method (FEM) which is able to consider the change of density and water content of the buffer was established. In addition, using the numerical model, a parametric study was conducted to investigate the effect of each thermal property on the temperature variation of the buffer.

Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations (압축 벤토나이트 완충재의 온도에 따른 열전도도 평가)

  • Yoon, Seok;Park, Seunghun;Kim, Min-Seop;Kim, Geon-Young;Lee, Seung-Rae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2020
  • An engineered barrier system (EBS) for the geological disposal of high-level radioactive waste (HLW) consists of a disposal canister packed with spent fuel, buffer material, backfill material, and gap-filling material. The buffer material fills the space between the canister and the near-field rock, thus serving to restrain the release of radionuclides and protect the canister from groundwater penetration. Furthermore, as significant amounts of heat energy are released from the canister to the surrounding rock, the thermal conductivity of the buffer plays an important role in maintaining the safety of the entire disposal system. Therefore, given the high levels of heat released from disposal canisters, this study measured the thermal conductivities of compacted bentonite buffers from Gyeongju under temperature variations ranging 25 to 80~90℃. There was a 5~20% increase in thermal conductivity as the temperature increased, and the temperature effect increased as the degree of saturation increased.

A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer (압축 벤토나이트 완충재의 비열 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • A geological repository for the disposal of high-level radioactive waste is generally constructed in host rock at depths of 500~1,000 meters below the ground surface. A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste, and it can restrain the release of radionuclides and protect the canister from the inflow of groundwater. Since high temperature in a disposal canister is released to the surrounding buffer material, the thermal properties of the buffer material are very important in determining the entire disposal safety. Even though there have been many studies on thermal conductivity, there have been only few studies that have investigates the specific heat capacity of the bentonite buffer. Therefore, this paper presents a specific heat capacity prediction model for compacted Gyeongju bentonite buffer material, which is a Ca-bentonite produced in Korea. Specific heat capacity of the compacted bentonite buffer was measured using a dual probe method according to various degrees of saturation and dry density. A regression model to predict the specific heat capacity of the compacted bentonite buffer was suggested and fitted using 33 sets of data obtained by the dual probe method.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.