DOI QR코드

DOI QR Code

Design Considerations for Buffer Materials and Research Status of Enhanced Buffer Materials

완충재 설계시 고려사항 및 고기능 완충재 연구 현황

  • Received : 2022.02.11
  • Accepted : 2022.02.18
  • Published : 2022.02.28

Abstract

Currently, the design reference temperature of the buffer material for disposing of high-level radioactive waste is less than 100℃, so if the heat dissipation capacity of the buffer material is improved, the spacings of the disposal tunnel and the deposition hole in the repository can be reduced. First of all, this study tries to analyze the criteria for thermal-hydraulic-mechanical performance of the buffer materials and to investigate the researches regarding the enhanced buffer materials with improved thermal conductivity. First, the thermal conductivity should be as high as possible and is affected by dry density, water content, temperature, mineral composition, and bentonite type. the organic content of the buffer material can have a significant effect on the corrosion performance of a canister, so the organic content should be low. In addition, hydraulic conductivity of the buffer material should be less than that of near-field rock and swelling pressure should be appropriate for buffer materials to function properly. For the development of enhanced buffer materials, additives such as sand, graphite, and graphite oxide are typically used, and a thermal conductivity can be greatly improved with a very small amount of graphite addition compared to sand.

현재 고준위방사성폐기물 처분을 위한 완충재의 설계 기준 온도는 100 ℃ 미만이기에 완충재의 열 분산 능력이 개선된다면 처분장의 처분 터널과 처분 공의 간격을 줄일 수 있다. 본 연구에서는 완충재의 열-수리-역학 성능 기준을 분석하고자 하였으며, 완충재의 열전도도를 개선할 수 있는 고기능 완충재의 연구 현황에 대해 알아보고자 하였다. 우선, 열전도도는 가능한 높아야 하며 완충재의 열전도도 값은 건조밀도, 함수비, 온도, 광물조성, 벤토나이트 유형에 영향을 받는다. 또한 완충재에 함유된 유기물은 처분용기의 부식 성능에 큰 영향을 미칠 수 있기에 완충재의 유기물 함량은 매우 낮아야 한다. 수리전도도는 근계암반보다 더 낮게 설정해야 하며, 완충재가 제 기능을 하기 위해 팽윤성이 적정해야 한다. 고기능 완충재 개발을 위해 대표적으로 모래, 흑연, 산화 흑연 등의 첨가제를 사용하며 흑연의 경우 모래보다 아주 적은 첨가량으로 열전도도를 크게 향상시킬 수 있다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 사용후 핵연료관리핵심기술개발사업단 및 한국연구재단(2021 M2E1A1085193)과, 한국연구재단 원자력연구개발사업(2021M2E3A2041351)의 지원을 받아 수행되었습니다.

References

  1. Agus, S.S., and Schanz, T., 2008, A method for predicting swelling pressure of compacted bentonites, Acta Geotechnica, 3(2), 125-137. https://doi.org/10.1007/s11440-008-0057-0
  2. Apted, M., Arthur, R., and Savage, D., 2005, Engineered Barrier System-Long-term Stability of Buffer and Backfill, Synthesis and extended abstracts (No. SKI-R-05-48), Swedish Nuclear Power Inspectorate.
  3. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., 2008, Superior thermal conductivity of single-layer graphene, Nano letters, 8(3), 902-907. https://doi.org/10.1021/nl0731872
  4. Carnahan, C.L., 1983, Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories, MRS Online Proceedings Library Archive, 26.
  5. Cases, J.M., Berend, I., Besson, G., Francois, M., Uriot, J.P., Thomas, F., and Poirier, J.E., 1992, Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite, 1, The sodium-exchanged form. Langmuir, 8(11), 2730-2739. https://doi.org/10.1021/la00047a025
  6. Castellanos, E., Villar, M.V., Romero, E., Lloret, A., and Gens, A., 2008, Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite, Physics and Chemistry of the Earth, Parts A/B/C, 33, S516-S526. https://doi.org/10.1016/j.pce.2008.10.056
  7. Chen, L., Liu, Y.M., Wang, J.,Cao, S.F., Xie, J.L., Ma, L.K., et al., and Liu, J., 2014, Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test. Engineering geology, 172, 57-68. https://doi.org/10.1016/j.enggeo.2014.01.008
  8. Chen, Y.G., Dong, X.X., Zhang, X.D., Ye, W.M., and Cui, Y.J., 2018a, Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite, Applied Clay Science, 166, 318-326. https://doi.org/10.1016/j.clay.2018.10.001
  9. Chen, Y.G., Liu, X.M., Mu, X., Ye, W.M., Cui, Y.J., Chen, B., and Wu, D.B., 2018b, Thermal conductivity of compacted GO-GMZ bentonite used as buffer material for a high-level radioactive waste repository, Advances in Civil Engineering, 2018.
  10. Chen, Y.G., Dong, X.X., Zhang, X.D., Ye, W.M., Cui, Y.J., 2019a, Thermal volumetric bahaviour of compacted GMZ bentonite saturated with salt solution. In: Proceedings of the 8th international Congress on Environmental Geotechnics Volume 3. Springer, Singapore, pp. 57-64.
  11. Chen, Y.G., Dong, X.X., Zhang, X.D., Ye, W.M., and Cui, Y.J., 2019b, Cyclic thermal and saline effects on the swelling pressure of densely compacted Gaomiaozi bentonite, Engineering Geology, 255, 37-47. https://doi.org/10.1016/j.enggeo.2019.04.016
  12. Chen, Z.G., Tang, C.S., Zhu, C., Shi, B., and Liu, Y.M., 2017, Compression, swelling and rebound behavior of GMZ bentonite/additive mixture under coupled hydro-mechanical condition. Engineering Geology, 221, 50-60. https://doi.org/10.1016/j.enggeo.2017.02.030
  13. Cho, W.J., Lee, J.O., and Chun, K.S., 1999, The temperature effects on hydraulic conductivity of compacted bentonite, Applied clay science, 14(1-3), 47-58. https://doi.org/10.1016/S0169-1317(98)00047-7
  14. Cho, W.J., 2019, Bentonite-Barier Material for Radioactive Waste Disposal, pp.181, KAERI/GP-535/2019.
  15. Cho, W.J., Chun, K., Lee, J.O., and Kang, M.J., 1997, Analysis of Functional Criteria for Buffer Material in the High-level Waste Repository, Korea Atomic Energy Research Institute Technical Report, 16-18, KAERI/TR-933/97.
  16. Cho, W.J., Lee, J.O., and Kang, C.H., 2000, Hydraulic conductivity of bentonite-sand mixture for a potential backfill material for a high-level radioactive waste repository, Nuclear Engineering and Technology, 32(5), 495-503.
  17. Cui, S.L., Zhang, H.Y., and Zhang, M., 2012, Swelling characteristics of compacted GMZ bentonite-sand mixtures as a buffer/backfill material in China. Engineering Geology, 141, 65-73. https://doi.org/10.1016/j.enggeo.2012.05.004
  18. Gillham, R.W., and Cherry, J.A., 1982, Contaminant migration in saturated unconsolidated geologic deposits. In Recent trends in hydrogeology, 189, 31-62. https://doi.org/10.1130/SPE189-p31
  19. Herbert, H.J., Kasbohm, J., Sprenger, H., Fernandez, A.M., and Reichelt, C., 2008, Swelling pressures of MX-80 bentonite in solutions of different ionic strength, Physics and Chemistry of the Earth, Parts A/B/C, 33, S327-S342. https://doi.org/10.1016/j.pce.2008.10.005
  20. Hueckel, T., and Pellegrini, R., 1992, Effective stress and water pressure in saturated clays during heating-cooling cycles, Canadian Geotechnical Journal, 29(6), 1095-1102. https://doi.org/10.1139/t92-126
  21. Ikonen, K., and Raiko, H., 2012, Thermal dimensioning of Olkiluoto repository for spent fuel. Working Report 2012-56. Posiva Oy, Eurajoki.
  22. Jalique, D.R., Stroes-Gascoyne, S., Hamon, C.J., Priyanto, D.G., Kohle, C., Evenden, W.G., et al., and Korber, D.R., 2016, Culturability and diversity of microorganisms recovered from an eight-year old highly-compacted, saturated MX-80 Wyoming bentonite plug. Applied Clay Science, 126, 245-250. https://doi.org/10.1016/j.clay.2016.03.022
  23. Jenni, A., Wersin, P., Thoenen, T., Baeyens, B., Ferrari, A., Gimmi, T., Mader, U., Marschall, P., Hummel, W., and Leupin, O., 2019, Bentonite Backfill Performance in a High-Level Waste Repository: A Geochemical Perspective. Technical Report NTB 19-03 270.
  24. JNC, 2000, H12: Project to establish the technical basis for HLW disposal in Japan. Supporting Report 3, Safety Assessment of the Geological Disposal System. JNC Tech. Rep., JNC TN1401 2000-04.
  25. Jobmann, M., and Buntebarth, G., 2009, Influence of graphite and quartz addition on the thermo-physical properties of bentonite for sealing heat-generating radioactive waste. Applied Clay Science, 44(3-4), 206-210. https://doi.org/10.1016/j.clay.2009.01.016
  26. Johnson, L.H., Tait, J.C., Shoesmith, D.W., Crosthwaite, J.L., and Gray, M.N., 1994, The disposal of Canada's nuclear fuel waste: engineered barriers alternatives (No. AECL-10718). Atomic Energy of Canada Limited.
  27. Juvankoski, M., 2013, Buffer design 2012 (No. POSIVA-12-14). Posiva Oy.
  28. Karnland, O., 2010, Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository.
  29. Kim, M.J., Lee, G.J., and Yoon, S., 2021, Numerical Study on the Effect of Enhanced Buffer Materials in a High-Level Radioactive Waste Repository. Applied Sciences, 11(18), 8733. https://doi.org/10.3390/app11188733
  30. Laird, D. A., 1996, Model for crystalline swelling of 2: 1 phyllosilicates. Clays and Clay Minerals, 44(4), 553-559. https://doi.org/10.1346/CCMN.1996.0440415
  31. Lee, C., Wei, X., Kysar, J.W., and Hone, J., 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388. https://doi.org/10.1126/science.1157996
  32. Lee, G.J., Yoon, S., and Cho, W.J., 2021, Effect of Bentonite Type on Thermal Conductivity in a HLW Repository. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 19(3), 331-338. https://doi.org/10.7733/jnfcwt.2021.19.3.331
  33. Lee, J., Kim, I., Ju, H., Choi, H., and Cho, D., 2020, Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 18(spc), 1-19.
  34. Lee, J.O., Choi, H., and Lee, J.Y., 2016, Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository. Annals of Nuclear Energy, 94, 848-855. https://doi.org/10.1016/j.anucene.2016.04.053
  35. Li, H.F., Chen, M.Q., Fu, B.A., and Liang, B., 2019, Evaluation on the thermal and moisture diffusion behavior of sand/bentonite. Applied Thermal Engineering, 151, 55-65. https://doi.org/10.1016/j.applthermaleng.2019.01.100
  36. Liu, L., 2013, Prediction of swelling pressures of different types of bentonite in dilute solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 303-318. https://doi.org/10.1016/j.colsurfa.2013.05.068
  37. Liu, Y.M., Cai, M.F., and Wang, J., 2007, Thermal conductivity of buffer material for high-level waste disposal. Chinese Journal of Rock Mechanics and Engineering, 26(S1), 3891-3896.
  38. Maanoja, S., Palmroth, M., Salminen, L., Lehtinen, L., Kokko, M., Lakaniemi, A.M. et al., and Rintala, J., 2021, The effect of compaction and microbial activity on the quantity and release rate of water-soluble organic matter from bentonites. Applied Clay Science, 211, 106192. https://doi.org/10.1016/j.clay.2021.106192
  39. Madsen, F.T., 1998, Clay mineralogical investigations related to nuclear waste disposal. Clay minerals, 33(1), 109-129. https://doi.org/10.1180/claymin.1998.033.1.11
  40. Moser, D.P., Onstott, T.C., Fredrickson, J.K., Brockman, F.J., Balkwill, D.L., Drake, G.R., Pfiffner, S.M., White, D.C., Takai, K., and Pratt, L.M., 2003, Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiology Journal 20, 517-548. https://doi.org/10.1080/713851170
  41. Oscarson, D.W., Stroes-Gascoyne, S., and Cheung, S.C.H., 1986, The effect of organic matter in clay sealing materials on the performance of a nuclear fuel waste disposal vault. Atomic Energy of Canada Limited Report, AECL-9078.
  42. Pacovsky, J., 2001, Selected results from geotechnical research on bentonite. In Proceedings of the 8th International Conference on Radioactive Waste Management and Environmental Remediation.
  43. Park, S., Yoon, S., Kwon, S., Lee, M.S., and Kim, G.Y., 2021, Temperature effect on the thermal and hydraulic conductivity of Korean bentonite buffer material. Progress in Nuclear Energy, 137, 103759. https://doi.org/10.1016/j.pnucene.2021.103759
  44. Pedersen, K., 2000, Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiology Letters 185, 9-16. https://doi.org/10.1016/S0378-1097(00)00061-6
  45. Piskova, A., Bezdicka, P., Hradil, D., Kafunkova, E., Lang, K., Vecernikova, E., Kovanda, F., and Grygar, T., 2010, High-temperature X-ray powder diffraction as a tool for characterization of smectites, layered double hydroxides, and their intercalates with porphyrins. Applied clay science, 49(4), 363-371. https://doi.org/10.1016/j.clay.2009.09.004
  46. PNC, 1992, Research and development on geological disposal of high-level radioactive waste, PNC TN1410 93-059.
  47. Posiva S.K.B, 2017, Safety functions, performance targets and technical design requirements for a KBS-3V repository. Conclusions and recommendations from a joint SKB and Posiva working group. Posiva SKB Report 01, Posiva Oy, Svensk Karnbranslehantering AB.
  48. Posiva, 2012, Safety case for the disposal of spent nuclear fuel at Olkiluoto. Description of the disposal system 2012 (No. POSIVA-12-5). Posiva Oy.
  49. Pusch, R., Karnland, O., and Hokmark, H., 1990, GMM-a general microstructural model for qualitative and quantitative studies of smectite clays (No. SKB-TR-90-43). Swedish Nuclear Fuel and Waste Management Co.
  50. Romero, E., Villar, M.V., and Lloret, A., 2005, Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays. Engineering Geology, 81(3), 255-268. https://doi.org/10.1016/j.enggeo.2005.06.011
  51. Shariatmadari, N., and Saeidijam, S., 2012, The effect of thermal history on thermo-mechanical behavior of bentonite-sand mixture. International Journal of Civil Engineering, 10(2), 162-167.
  52. SKB, 2004, Interim main report of the safety assessment SR-Can. SKB Technical Report TR-04-11, Swedish Nuclear Fuel Management Company Limited, Stockholm, Sweden.
  53. SKB, 2007. RD&D-programme 2007, SKB TR-07-12. SKB Swedish Nuclear Fuel and Waste Management CO., Stockholm, pp. 260.
  54. SKBF/KBS, 1983, Final Storage of Spent Fule-KBS-3.
  55. Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S., 2008, Graphene-based ultracapacitors. Nano letters, 8(10), 3498-3502. https://doi.org/10.1021/nl802558y
  56. Stroes-Gascoyne, S., and Hamon, C.J., 2008, The Effect of Intermediate Dry Densities and Intermediate Porewater Salinities on the Culturability of Heterotrophic Aerobic Bacteria in Compacted 100% Bentonite. NWMO-TR-2008-11; Nuclear Waste Management Organization.
  57. Stroes-Gascoyne, S., and West, J.M., 1997, Microbial studies in the Canadian nuclear fuel waste management program. FEMS Microbiology Reviews 20, 573-590. https://doi.org/10.1016/S0168-6445(97)00035-1
  58. Stroes-Gascoyne, S., Hamon, C.J., and Maak, P., 2011, Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository. Physics and Chemistry of the Earth, Parts A/B/C 36, 1630-1638. https://doi.org/10.1016/j.pce.2011.07.085
  59. Sun, D.A., Cui, H., and Sun, W., 2009, Swelling of compacted sand-bentonite mixtures. Applied Clay Science, 43(3-4), 485-492. https://doi.org/10.1016/j.clay.2008.12.006
  60. Sun, D.A., Sun, W.J., and Fang, L., 2014, Swelling characteristics of Gaomiaozi bentonite and its prediction. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 113-118. https://doi.org/10.1016/j.jrmge.2014.01.001
  61. Sun, D.A., Zhang, L., Li, J., and Zhang, B., 2015, Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution. Applied Clay Science, 105, 207-216. https://doi.org/10.1016/j.clay.2014.12.032
  62. Sun, Z., Chen, Y.G., Cui, Y.J., Xu, H.D., Ye, W.M., and Wu, D.B., 2018, Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite: the Beishan site case, Gansu, China. Engineering Geology, 244, 66-74. https://doi.org/10.1016/j.enggeo.2018.08.002
  63. Tang, A.M., and Cui, Y.J., 2010, Effects of mineralogy on thermo-hydro-mechanical parameters of MX80 bentonite. Journal of Rock Mechanics and Geotechnical Engineering, 2(1), 91-96.
  64. Tang, A.M., Cui, Y.J., and Le, T.T., 2008a, A study on the thermal conductivity of compacted bentonites. Applied Clay Science, 41(3-4), 181-189. https://doi.org/10.1016/j.clay.2007.11.001
  65. Tang, A.M., Cui, Y.J., and Barnel, N., 2008b, Thermo-mechanical behaviour of a compacted swelling clay. Geotechnique, 58(1), 45-54. https://doi.org/10.1680/geot.2008.58.1.45
  66. Tarnawski, V.R., Momose, T., and Leong, W.H., 2009, Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique, 59(4), 331-338. https://doi.org/10.1680/geot.2009.59.4.331
  67. Usman, M.O., and Simpson, M.J., 2021, Assessment of the molecular-level compositional heterogeneity of natural organic matter in bentonites intended for long-term used nuclear fuel storage. Organic Geochemistry, 152, 104166. https://doi.org/10.1016/j.orggeochem.2020.104166
  68. Van, O.H., 1991, Clay colloid chemistry for clay technologists. Geologists and soil scientists.
  69. Villar, M.V., 2004, Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report.
  70. Villar, M.V., and Lloret, A., 2004, Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Applied clay science, 26(1-4), 337-350. https://doi.org/10.1016/j.clay.2003.12.026
  71. Villar, M.V., Gomez-Espina, R., and Lloret, A., 2010, Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. Journal of Rock Mechanics and Geotechnical Engineering, 2(1), 71-78.
  72. Wen, Z.J., 2006, Physical property of China's buffer material for high-level radioactive waste repositories. Chinese Journal of Rock Mechanics and Engineering, 25(4), 794-800. https://doi.org/10.3321/j.issn:1000-6915.2006.04.014
  73. Westsik, J.H., Bray, L.A., Hodges, F.N., and Wheelwright, E.J., 1981, Permeability, swelling and radionuclide retardation properties of candidate backfill materials. MRS Online Proceedings Library (OPL), 6.
  74. Xu, L., Ye, W.M., Chen, B., Chen, Y.G., and Cui, Y.J., 2016, Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials. Engineering Geology, 213, 46-54. https://doi.org/10.1016/j.enggeo.2016.08.015
  75. Xu, Y., Zeng, Z., and Lv, H., 2019, Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository. Applied Clay Science, 174, 10-14. https://doi.org/10.1016/j.clay.2019.03.017
  76. Ye, W.M., Zhang, Y.W., Chen, Y.G., Chen, B., and Cui, Y. J., 2013, Experimental investigation on the thermal volumetric behavior of highly compacted GMZ01 Bent. Applied clay science, 83, 210-216. https://doi.org/10.1016/j.clay.2013.09.001
  77. Ye, W.M., Zheng, Z.J., Chen, B., Chen, Y.G., Cui, Y.J., and Wang, J., 2014, Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Applied Clay Science, 101, 192-198. https://doi.org/10.1016/j.clay.2014.08.002
  78. Yong, R.N., 1999, Soil suction and soil-water potentials in swelling clays in engineered clay barriers. Engineering geology, 54(1-2), 3-13. https://doi.org/10.1016/S0013-7952(99)00056-3
  79. Yoon, S., Kim, M.J., Lee, S.R., and Kim, G.Y., 2018a, Thermal conductivity estimation of compacted bentonite buffer materials for a high-level radioactive waste repository. Nuclear Technology, 204(2), 213-226. https://doi.org/10.1080/00295450.2018.1471909
  80. Yoon, S., Cho, W., Lee, C., and Kim, G.Y., 2018b, Thermal conductivity of Korean compacted bentonite buffer materials for a nuclear waste repository. Energies, 11(9), 2269. https://doi.org/10.3390/en11092269
  81. Yoon, S., Kim, M.J., Park, S., and Kim, G.Y., 2021, Thermal conductivity prediction model for compacted bentonites considering temperature variations. Nuclear Engineering and Technology, 53, 3359-3366. https://doi.org/10.1016/j.net.2021.05.001
  82. Zhang, F., Ye, W.M., Wang, Q., Chen, Y.G., and Chen, B., 2019, An insight into the swelling pressure of GMZ01 bentonite with consideration of salt solution effects. Engineering Geology, 251, 190-196. https://doi.org/10.1016/j.enggeo.2019.02.016
  83. Zhang, M., Zhang, H., Cui, S., Jia, L., Zhou, L., and Chen, H., 2012, Engineering properties of GMZ bentonite-sand as buffer/backfilling material for high-level waste disposal. European journal of environmental and civil engineering, 16(10), 1216-1237. https://doi.org/10.1080/19648189.2012.690934
  84. Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J., 2013, Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Engineering Geology, 166, 74-80. https://doi.org/10.1016/j.enggeo.2013.09.001
  85. Zhuang, Y.C., Xie, K. H., and Sun, Y.H., 2005, Experimental study on thermal conductivity of mixed materials of sand and bentonite. Yantu Lixue(Rock Soil Mech.), 26(2), 261-264.