• Title/Summary/Keyword: 완전혼합반응기

Search Result 35, Processing Time 0.023 seconds

CO Formation Characteristics in Under-ventilated Fire Conditions using a PSR (Perfectly Stirred Reactor) (완전혼합반응기(PSR)를 이용한 환기부족화재조건에서 CO의 생성특성)

  • Hwang, Hae-Joo;Hwang, Cheol-Hong;Park, Chung-Hwa;Oh, Chang-Bo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.34-37
    • /
    • 2012
  • 환기부족 구획화재에서 CO의 생성은 온도 및 조성에 큰 영향을 받으며, 구획 내의 체류시간 및 이동경로에 따라 복잡한 현상을 경험하게 된다. 그 결과 구획 내부의 CO 생성특성을 실험을 통해 상세하게 규명하는 것은 많은 한계가 있다. 이러한 배경 하에 본 연구에서는 환기부족 구획화재의 조건에서 총괄당량비에 따른 CO의 생성특성에 관한 수치해석 연구를 수행하였다. PSR(완전혼합반응기) code와 헵탄연료의 상세화학반응기구가 사용되었다. 주요 변수로서 체류시간, 온도, 반응물과 생성물의 혼합정도 그리고 열손실 등이 CO의 생성에 미치는 독립적 영향을 검토하였다. 추가로 주요반응에 의한 CO의 몰 생성률 및 소모율과 CO의 반응경로 분석을 통해 환기부족 구획화재의 조건에서 구체적인 CO 생성특성에 관한 이해가 시도되었다.

  • PDF

Modeling of Non-Equilibrium Kinetics of Fuel Rich Combustion in Gas Generator (농후 연소 가스발생기의 비평형 연소 화학반응 모델링)

  • 유정민;이창진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.89-96
    • /
    • 2006
  • The combustion temperature in gas generator should be kept below around 1,000K to avoid any possible thermal damages to turbine blade by adopting either fuel rich or oxidizer rich combustion. Thus, non-equilibrium chemical reaction dominates in the gas generator. Meanwhile, Kerosene is a compounded fuel mixed with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focus to model the non-equilibrium chemical reaction of kerosene/LOX with detailed kinetics developed by Dagaut using PSR(Perfectly stirred reactor) assumption. Also, droplet evaporation time is taken into account by calculating for the residence time of droplet and by decoupling reaction temperature from the reactor temperature. In Dagaut’s surrogate model for kerosene, chemical kinetics of kerosene consists of 1592 reaction steps with 207 chemical species. The comparison of calculation results with experimental data could provide very reliable and accurate numbers in the prediction of combustion gas temperature, species fraction and other gas properties.

A Chemical Reactor Modeling for Prediction of NO Formation of Methane-Air Lean Premixed Combustion in Jet Stirred Reactor (제트 혼합 반응기 내 희박 예혼합 메탄-공기 연소의 NO 생성 예측을 위한 화학 반응기 모델링)

  • Lee, Bo-Rahm;Park, Jung-Kyu;Lee, Do-Yong;Lee, Min-Chul;Park, Won-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • A chemical reactor model (CRM) was developed for a jet stirred reactor (JSR) to predict the emission of exhaust such as NOx. In this study, a two-PSR model was chosen as the chemical reactor model for the JSR. The predictions of NO formation in lean premixed methane-air combustion in the JSR were carried out by using CHEMKIN and GRI 3.0 methane-air combustion mechanism which include the four NO formation mechanisms. The calculated results were compared with Rutar's experimental data for the validation of the model. The effects of important parameters on NO formation and the contributions of the four NO pathways were investigated. In the flame region, the major pathway is the prompt mechanism, and in the post flame region, the major pathway is the Zelodovich mechanism. Under the lean premixed condition, the N2O mechanism is the important pathway in both flame and postflame regions.

Modeling of Non-Equilibrium Kinetics in Gas Generator including Soot Formation (Soot 생성을 고려한 가스발생기의 Kerosene/LOx의 비평형 화학반응 모델링)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.150-153
    • /
    • 2006
  • Gas generator should be adopted either fuel rich or oxidizer rich combustion because of the temperature restriction to avoid any possible thermal damages to turbine blade. This study focuses to model the non-equilibrium chemical reaction of kerosene/LOx with detailed kinetics developed by Dagaut using Perfectly stirred reactor(PSR) assumption. To predict more reliable species fraction and other gas properties, Frenklach's soot model was added to Dagaut's detailed kinetics.

  • PDF

Prediction of Pollutant Emissions from Lean Premixed Gas Turbine Combustor Using Chemical Reactor Network (화학반응기 네트워크을 이용한 희박 예혼합 가스터빈 연소기에서의 오염물질 예측에 관한 연구)

  • Park, Jung-Kyu;Nguyen, Truc Huu;Lee, Min-Chul;Chung, Jae-Wha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2012
  • A chemical reactor network (CRN) was developed for a lean premixed gas turbine combustor to predict the emission of pollutants such as NOx and CO. In this study, the predictions of NOx and CO emissions from lean premixed methane-air combustion in the gas turbine were carried out using CHEMKIN and a GRI 3.0 methane-air combustion mechanism, which includes the four NO formation mechanisms for various load conditions. The calculated results were compared with experimental data obtained from a modified test combustor to validate the model. The contributions of the four NO pathways were investigated for various load conditions. The effects of nonuniformity of the mass flux and of the equivalence ratio of the injector on the NOx formation were investigated, and a method of reducing the pollutant formation was suggested for the development of a sub-10 ppm gas turbine combustor.

Characteristics of Anaerobic Acid Fermentation with Food waste leachate by Reactor Type of Retention Time for Landfill Site Injection (매립지 주입을 위한 음폐수 산발효 시 반응기 형태와 체류시간에 따른 특성)

  • Moon, Kwangseok;Kim, Jaehyung;Koo, Hyemin;Lim, Junhyuk;Kim, Nakjoo;Chang, Wonseok;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.125-131
    • /
    • 2014
  • In order to increase landfill gas (LFG) production with food waste leachate, this study was confirmed to be acidogenetic conditions for landfill site injection. Thereby, it was conducted for acidogenetic treatments to determine the decrease in viscosity and VFA production. After acidogenesis treatments, solubility of food waste leachate increased approximately 15%, and as a result, UASB and CSTR were similar by reactor type using the change of retention time. Based on the result of the change in viscosity by reactor type, efficiency of UASB showed approximately 11.38% of higher decrease in viscosity as $76.95{\pm}3.27%$ vs. CSTR. Also, VFA production showed the higher increase of 2.01 times (UASB) and 1.76 times (CSTR) respectively at the point of increasing retention time from 3 to 5 days. From the above results, efficiency of UASB in a reactor was relatively higher because large molecular lead to longer retention time than small molecular due to having screen effect in the fixed media.

Two-zone Modeling for Combustion Processes of HCCI Engine (균일 예혼합 압축착화 엔진 연소과정의 Two-Zone 모델링)

  • Lee Myunghoon;Kim Kunhong;Kim Yongmo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.74-79
    • /
    • 2005
  • The Homogeneous Charge Compression Ignition(HCCI) combustion is currently under intensive investigation because of its potential to increase thermal efficiency while greatly decreasing NOx and p.M. In order to account for the thermal boundary layer effects, the two-zone model has been developed to analyze the combustion characteristics of HCCI engine. The detailed chemistry are represented by the GRI mechanism 3.0 involving 53 species and 325reactions. The present combustion model has been validated against the experimental results. Computations are also made for the wide-range operating conditions of HCCI engine.

A Study on NOx Formation Pathway of Methane-Air Lean Premixed Combustion by using PSR Model (PSR 모델을 이용한 메탄-공기 희박 예혼합 연소의 NOx 생성 경로 연구)

  • Lee, Bo-Rahm;Kim, Hyun;Park, Jung-Kyu;Lee, Min-Chul;Park, Won-Shik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.46-52
    • /
    • 2009
  • In this study the predictions of NOx in methane-air lean premixed combustion in PSR were carried out with GRI 3.0 methane-air combustion mechanism and Zeldovich, nitrous oxide, prompt, and NNH NO formation mechanism by using CHEMKIN code. The results are compared to the JSR experimental data of Rutar for the validation of the model. This study concerns about the importance of the chemical pathways. The chemical pathway most likely to form the NO in methane-air lean-premixed combustion was investigated. The results obtained with the 4 different NO mechanisms for residence time(0.5-1.6ms) and pressure(3, 4.7, 6.5 atm) are compared and discussed.

Development of a Detailed Chemical Kinetic Reaction Mechanism of Surrogate Mixtures for Gasoline Fuel (가솔린 연료를 위한 대용혼합물의 상세한 화학반응 메카니즘 개발)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • The oxidation of surrogate mixtures for gasoline fuel was studied numerically in perfectly stirred reactor(PSR) to develope the needed detailed reaction mechanism. The reaction mechanism was assembled with the mechanisms for the oxidation of iso-octane or kerosene. It was shown that the reaction model predicted reasonably well the concentration profiles of fuel and major species reported in the literature. As the addition of kerosene into iso-octane as fuel was increased, the concentrations of $C_2H_2$ and benzene became high. Especially benzene known as a carcinogen appeared at a very high concentration in the flue gases.

Effects of Solids Content and Mixing Speed in Treatment of Petroleum Hydrocarbon Contaminated Soils using a Bioreactor (고형물함량 및 혼합강도가 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 미치는 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this study was to evaluate effects of solids content and mixing speed in treatment of petroleum hydrocarbon contaminated soils using a slurry-phase bioreactor. Performance results on slurry-phase bioremediation of diesel fuel contaminated soil were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) was evaluated in combination with biological treatment. Abiotic and biotic fate of the TPH were determined using soil not previously exposed to compounds in diesel fuel. The reactor volume for given throughput can be reduced by maximizing the solids content. Applications of 50% and 20% solids content(dry weight basis) were showed a little difference(57.5% : 61.6%) in biological TPH removal rate each other. Mixing and particle suspension are critical to desorption and biological degradation. In this standpoint, this study was performed using two mixing speed. When the reactor was operated at 70rpm, it had a better result in the particle suspension and TPH removal rate than the reactor with mixer rotated at 20rpm. In the reactor applied 20rpm, it was resulted in failure of particle suspension.

  • PDF