DOI QR코드

DOI QR Code

A Chemical Reactor Modeling for Prediction of NO Formation of Methane-Air Lean Premixed Combustion in Jet Stirred Reactor

제트 혼합 반응기 내 희박 예혼합 메탄-공기 연소의 NO 생성 예측을 위한 화학 반응기 모델링

  • 이보람 (건국대학교 기계공학부) ;
  • 박정규 (건국대학교 기계공학부) ;
  • 이도용 (건국대학교 기계공학부) ;
  • 이민철 (한국전력공사 전력연구원) ;
  • 박원식 (한국전력공사 전력연구원)
  • Published : 2010.04.01

Abstract

A chemical reactor model (CRM) was developed for a jet stirred reactor (JSR) to predict the emission of exhaust such as NOx. In this study, a two-PSR model was chosen as the chemical reactor model for the JSR. The predictions of NO formation in lean premixed methane-air combustion in the JSR were carried out by using CHEMKIN and GRI 3.0 methane-air combustion mechanism which include the four NO formation mechanisms. The calculated results were compared with Rutar's experimental data for the validation of the model. The effects of important parameters on NO formation and the contributions of the four NO pathways were investigated. In the flame region, the major pathway is the prompt mechanism, and in the post flame region, the major pathway is the Zelodovich mechanism. Under the lean premixed condition, the N2O mechanism is the important pathway in both flame and postflame regions.

제트 혼합 반응기(JSR) 내의 NOx와 같은 배출물질을 예측하기 위해서 화학반응기 모델을 개발했다. 본 연구에서는 JSR에 대한 화학반응기 모델로서 two-PSR 모델이 채택되었다. CHEMKIN 코드와 4가지 NO 생성 메커니즘을 포함한 GRI 3.0 메탄-공기 연소 메커니즘을 이용해서 JSR내의 희박 예혼합 메탄-공기 연소의 NO 생성예측을 실시하였다. 모델의 검증을 위해서 계산된 결과를 Rutar의 실험 데이터와 비교하였다. NO 생성의 중요 파라미터와 4 가지 NO 경로의 기여도를 조사하였다. 화염 영역에서는 prompt 메커니즘이 주된 경로이고, 화염후영역에서는 Zeldovich 메커니즘이 주된 경로이다. 희박 예혼합 조건에서는 N2O 메카니즘이가 화염 및 화염후 영역 모두에서 중요한 경로이다.

Keywords

References

  1. DuPont, V., Pourkashanian, M., and Williams, A., 1993, "Modelling Process Heaters Fired By Natural Gas," Journal of the Institute of Energy, Vol.66, No.466, pp. 20-28.
  2. Michaud, M.G., Westmoreland, P.R., and Feitelberg, A.S., 1992, Proceedings of the Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, pp. 879-887.
  3. Rutar, T.S., 2000, "NOx and CO Formation for Lean-Premixed Methane-Air Combustion in a Jet- Stirred Reactors Operated at Elevated Pressure," Ph.D. dissertation, University of Washington.
  4. Miller, J.A., and Bowman, C.T., 1989, "Mechanism and Modeling of Nitrogen Chemistry in Combustion," Progress in Energy and Combustion Science, Vol.15, No.4, pp. 287-338. https://doi.org/10.1016/0360-1285(89)90017-8
  5. Harrington, J. E., Smith, G. P., Berg, P. A., Jeffries, J. B., and Crosley, D. R., 1996, Twenty-sixth Symposium(International) on Combustion, The Combustion Institute, pp. 2133-2138.
  6. Steele, R.C., Tonouchi, J.H., Nicol,D.G., Malte, P.C., and Pratt, D.T., 1998, "Characterization of NOx, $N_2O$, and CO for Lean-Premixed Combustion in a High-Pressure Jet-Stirred Reactor," ASME J. Eng. Gas Turbine Power, Vol.120, pp. 303-310. https://doi.org/10.1115/1.2818121
  7. Lee, B.R., Kim, H., Park, J.K., Lee, M.C. and Park, W.S., 2009, "A Study on NOx Formation Pathway of Methane-Air Lean Premixed Combustion by using PSR Model," Transactions of KSAE, Vol. 17, NO. 5, pp. 46-52.
  8. Steele, R.C., 1995, "NOx and $N_2O$ in Lean-Premixed Jet Stirred Reactors Operated from 1 to 7 atm," Ph.D. Dissertation, University of Washington, Seattle, WA.
  9. Heywood, J.B., 1988 "Internal Combustion Engine Fundamentals," McGraw-hill International Editions, v.2 no.1 pp.572-586.
  10. Rutar, T., Martin, S.M., Nicol, D.G., Malte, P.C., and Pratt, D.T., 1997, "Effects of Incomplete Premixing on NOx Formation at Temperature and Pressure Conditions of LP Combustion Turbines," ASME Paper NO.97-GT-335, ASME.
  11. Mongia, R.K., Tomita, E., Hsu, F.K., Talbot, L., and Dibble, R.W., 1996, "Use of an Optical Probe of Time-Resolved In-Situ Measurement of Local Air-to-Fuel Ratio and Extent of Fuel Mixing with Application to Low NOx Emissions in Premixed Gas Turbines," Twenty-Sixth symposium (International) on Combustion, pp. 2749-2757.
  12. Steel, R.C., 1995, "NOx and N2O Formation in Lean-Premixed Jet-Stirred Reactors Operated from 1 to 7atm," Ph.D Thesis, University of Washington.
  13. Steel, R.C., Tarrett, A.C., Malte, P.C., Tonouchi, J. H., and Nicol, D. G., 1997, "Variables Affecting NOx Formation in Lean-Premixed Combustion," Transactions of the ASME, Journal of Engineering for Gas Turbine and Power, Vol. 119, pp. 102-107. https://doi.org/10.1115/1.2815532
  14. Novosselov, Igor V., 2006, "Chemical Reactor Networks for Combustion Systems Modeling," Ph.D. dissertation, University of Washington..
  15. http://www.me.berkeley.edu/gri_mech/version30/text30.html.

Cited by

  1. Effect of Pressure and Stoichiometric Air Ratio on NOx Emissions in Gas-Turbine Dump Combustor with Double Cone Burner vol.36, pp.3, 2012, https://doi.org/10.3795/KSME-B.2012.36.3.251
  2. and CO Emissions from an Industrial Lean-Premixed Gas Turbine Combustor Using a Chemical Reactor Network Model vol.27, pp.3, 2013, https://doi.org/10.1021/ef301741t