• Title/Summary/Keyword: 완전상태궤환

Search Result 3, Processing Time 0.019 seconds

Adaptive Neural Control of Nonlinear Pure-feedback Systems (완전궤환 비선형 계통에 대한 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Chang, Young-Hak
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.182-189
    • /
    • 2010
  • A new Adaptive neural state-feedback controller for the fully nonaffine pure-feedback nonlinear system are presented in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controller requires no backstepping design procedure. Avoiding backstepping makes the controller structure and stability analysis considerably simple. The proposed controller employs only one neural network to approximate unknown ideal controllers, which highlights the simplicity of the proposed neural controller. Simulation examples demonstrate the efficiency and performance of the proposed approach.

State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System (완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak;Ryoo, Young-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.

A Dynamic Decoupling of Two Cooperating Robot System and Stability Analysis (협조로보트 시스템의 동적 Decoupling과 안정도연구)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • This paper presents a new control scheme for decoupling the dynamics of two coordinating robot manipulators. A simple full-state feedback scheme with configuration dependent gains can be devised to decouple the system dynamics such that the dynamics of each arm and that of an object held by the two arms is independent of one another. A condition for stability is shown. The advantage of the proposed scheme is that the same control scheme can be applied both for the closed kinematic chain(object-grasping) case and open kinematic chain(no object-grasping) case.

  • PDF