• Title/Summary/Keyword: 완비적 공리

Search Result 6, Processing Time 0.019 seconds

The Infinite Decimal Representation: Its Opaqueness and Transparency (무한소수 기호: 불투명성과 투명성)

  • Lee, Jihyun
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.4
    • /
    • pp.595-605
    • /
    • 2014
  • Infinite decimals have an infinite number of digits, chosen arbitrary and independently, to the right side of the decimal point. Since infinite decimals are ambiguous numbers impossible to write them down completely, the infinite decimal representation accompanies unavoidable opaqueness. This article focused the transparent aspect of infinite decimal representation with respect to the completeness axiom of real numbers. Long before the formalization of real number concept in $19^{th}$ century, many mathematicians were able to deal with real numbers relying on this transparency of infinite decimal representations. This analysis will contribute to overcome the double discontinuity caused by the different conceptualizations of real numbers in school and academic mathematics.

  • PDF

실수계의 공리를 이용한 지수 ar의 학습과 지도

  • Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • v.28 no.2
    • /
    • pp.159-172
    • /
    • 2012
  • In all Mathematics I Textbooks(Kim, S. H., 2010; Kim, H. K., 2010; Yang, S. K., 2010; Woo, M. H., 2010; Woo, J. H., 2010; You, H. C., 2010; Youn, J. H., 2010; Lee, K. S., 2010; Lee, D. W., 2010; Lee, M. K., 2010; Lee, J. Y., 2010; Jung, S. K., 2010; Choi, Y. J., 2010; Huang, S. K., 2010; Huang, S. W., 2010) in high schools in Korea these days, it is written and taught that for a positive real number $a$, $a^{\frac{m}{n}}$ is defined as $a^{\frac{m}{n}}={^n}\sqrt{a^m}$, where $m{\in}\mathbb{Z}$ and $n{\in}\mathbb{N}$ have common prime factors. For that situation, the author shows his opinion that the definition is not well-defined and $a^{\frac{m}{n}}$ must be defined as $a^{\frac{m}{n}}=({^n}\sqrt{a})^m$, whenever $^n\sqrt{a}$ is defined, based on the field axiom of the real number system including rational number system and natural number system. And he shows that the following laws of exponents for reals: $$\{a^{r+s}=a^r{\cdot}a^s\\(a^r)^s=a^{rs}\\(ab)^r=a^rb^r$$ for $a$, $b$>0 and $s{\in}\mathbb{R}$ hold by the completeness axiom of the real number system and the laws of exponents for natural numbers, integers, rational numbers and real numbers are logically equivalent.

유연한 수학적 사고에 의한 개념의 동치성 비교 - 사례 연구 -

  • Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • v.27 no.4
    • /
    • pp.381-389
    • /
    • 2011
  • The flexible mathematical thinking - the ability to generate and connect various representations of concepts - is useful in understanding mathematical structure and variation in problem solving. In particular, the flexible mathematical thinking with the inventive mathematical thinking, the original mathematical problem solving ability and the mathematical invention is a core concept, which must be emphasized in all branches of mathematical education. In this paper, the author considered a case of flexible mathematical thinking with an inventive problem solving ability shown by his student via real analysis courses. The case is on the proofs of the equivalences of three different definitions on the concept of limit superior shown in three different real analysis books. Proving the equivalences of the three definitions, the student tried to keep the flexible mathematical thinking steadily.

Hilbert's Program as Research Program (연구 프로그램으로서의 힐버트 계획)

  • Cheong, Kye-Seop
    • Journal for History of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.37-58
    • /
    • 2011
  • The development of recent Mathematical Logic is mostly originated in Hilbert's Proof Theory. The purpose of the plan so called Hilbert's Program lies in the formalization of mathematics by formal axiomatic method, rescuing classical mathematics by means of verifying completeness and consistency of the formal system and solidifying the foundations of mathematics. In 1931, the completeness encounters crisis by the existence of undecidable proposition through the 1st Theorem of G?del, and the establishment of consistency faces a risk of invalidation by the 2nd Theorem. However, relative of partial realization of Hilbert's Program still exists as a fruitful research program. We have tried to bring into relief through Curry-Howard Correspondence the fact that Hilbert's program serves as source of power for the growth of mathematical constructivism today. That proof in natural deduction is in truth equivalent to computer program has allowed the formalization of mathematics to be seen in new light. In other words, Hilbert's program conforms best to the concept of algorithm, the central idea in computer science.

A research on Mathematical Invention via Real Analysis Course in University (대학교의 해석학 강좌에서 학생들의 수학적 발명에 관한 연구)

  • Lee, Byung-Soo
    • Communications of Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.471-487
    • /
    • 2008
  • Inventive mathematical thinking, original mathematical problem solving ability, mathematical invention and so on are core concepts, which must be emphasized in all branches of mathematical education. In particular, Polya(1981) insisted that inventive thinking must be emphasized in a suitable level of university mathematical courses. In this paper, the author considered two cases of inventive problem solving ability shown by his many students via real analysis courses. The first case is about the proof of the problem "what is the derived set of the integers Z?" Nearly all books on mathematical analysis sent the question without the proof but some books said that the answer is "empty". Only one book written by Noh, Y. S.(2006) showed the proof by using the definition of accumulation points. But the proof process has some mistakes. But our student Kang, D. S. showed the perfect proof by using The Completeness Axiom, which is very useful in mathematical analysis. The second case is to show the infinite countability of NxN, which is shown by informal proof in many mathematical analysis books with formal proofs. Some students who argued the informal proof as an unreasonable proof were asked to join with us in finding the one-to-one correspondences between NxN and N. Many students worked hard and find two singled-valued mappings and one set-valued mapping covering eight diagrams in the paper. The problems are not easy and the proofs are a little complicated. All the proofs shown in this paper are original and right, so the proofs are deserving of inventive mathematical thoughts, original mathematical problem solving abilities and mathematical inventions. From the inventive proofs of his students, the author confirmed that any students can develope their mathematical abilities by their professors' encouragements.

  • PDF

Beyond the Union of Rational and Irrational Numbers: How Pre-Service Teachers Can Break the Illusion of Transparency about Real Numbers? (유리수와 무리수의 합집합을 넘어서: 실수가 자명하다는 착각으로부터 어떻게 벗어날 수 있는가?)

  • Lee, Jihyun
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.263-279
    • /
    • 2015
  • The introduction of real numbers is one of the most difficult steps in the teaching of school mathematics since the mathematical justification of the extension from rational to real numbers requires the completeness property. The author elucidated what questions about real numbers can be unanswered as the "institutional didactic void" in school mathematics defining real numbers as the union of the rational and irrational numbers. The pre-service teachers' explanations on the extension from rational to real numbers and the raison d'$\hat{e}$tre of arbitrary non-recurring decimals showed the superficial and fragmentary understanding of real numbers. Connecting school mathematics to university mathematics via the didactic void, the author discussed how pre-service teachers could break the illusion of transparency about the real number.