• Title/Summary/Keyword: 와이어 센서

Search Result 1,160, Processing Time 0.033 seconds

Effects of Scintillation Crystal Surface Treatments on Small Gamma Camera Imaging (섬광체 옆 표면처리가 소형 감마카메라 영상에 미치는 효과)

  • Kim, J. H.;Choi, Y.;Kim, J. Y.;Oh, C. H.;Kim, S. E.;Choe, Y. S.;Lee, K. H.;Joo, K. S.;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.515-521
    • /
    • 1999
  • Scintillator crystal is an important part and detcrmines performance characteristics of the gamma camera. We investigated the offects of scintillation crystal surface treatment on gamma camera imaging. Nal(TI) and Csl(Tl) scintillators. 20 mm diameter and 10 mm thickness, applied with two different surface treatments, white and black reflcetors, were applied to Nal(Tl) and Csl(Ti). The optical properties of generated scintillation light were evaluated by Monte Carlo simulation method and by actual measurement using a position sensitive photomultiplier tube (PSPMT). We measured sensitivity, energy resolution and spatial resolution of gamma camera with the various scintillators coupled to a PSPMT. In the simulation. Nal(Tl)-white prosented the best sensitivity. In the measurements, the sensitivities and the intrinsic spatial resolutions of Nal(Tl)-white, Nal(Tl)-black. CsI(Tl)-white, CsI(Tl)-black were 2920, 2322, 1754, 1401 cps/$\mu$ci and 5.2, 4.5, 7.0, 6.3 mm FWHM. respectively. Their intrinsic energy resolutions were mesured 12.5, 23.5, 20.5, 33.3% FWHM at 140 keV Tc-99m. In this study, we investigated the offects of a side surface treatment of the scintillator on the gamma camera imaging. Simulation and measurement prescnted similat trends. Based on the results, we concluded that the surface of th NaI(Tl)seintillator must be treated by absorptive materials in order to develop the gamma camera having good spatial resolution.

  • PDF

Present Status and Future Prospect of Satellite Image Uses in Water Resources Area (수자원분야의 위성영상 활용 현황과 전망)

  • Kim, Seongjoon;Lee, Yonggwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.105-123
    • /
    • 2018
  • Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.

THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION (광중합 복합레진의 중합초기 동적 점탄성의 변화)

  • Kim, Min-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.450-459
    • /
    • 2009
  • The aim of this study was to measure the initial dynamic modulus changes of light cured composites using a custom made rheometer. The custom made rheometer consisted of 3 parts: (1) a measurement unit of parallel plates made of glass rods, (2) an oscillating shear strain generator with a DC motor and a crank mechanism, (3) a stress measurement device using an electromagnetic torque sensor. This instrument could measure a maximum torque of 2Ncm, and the switch of the light-curing unit was synchronized with the rheometer. Six commercial composite resins [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), and Clearfil AP-X (CF)] were investigated. A dynamic oscillating shear test was undertaken with the rheometer. A certain volume ($14.2\;mm^3$) of composite was loaded between the parallel plates, which were made of glass rods (3 mm in diameter). An oscillating shear strain with a frequency of 6 Hz and amplitude of 0.00579 rad was applied to the specimen and the resultant stress was measured. Data acquisition started simultaneously with light curing, and the changes in visco-elasticity of composites were recorded for 10 seconds. The measurements were repeated 5 times for each composite at $25{\pm}0.5^{\circ}C$. Complex shear modulus G*, storage shear modulus G', loss shear modulus G" were calculated from the measured strain-stress curves. Time to reach the complex modulus G* of 10 MPa was determined. The G* and time to reach the G* of 10 MPa of composites were analyzed with One-way ANOVA and Tukey's test ($\alpha$ = 0.05). The results were as follows. 1. The custom made rheometer in this study reliably measured the initial visco-elastic modulus changes of composites during 10 seconds of light curing. 2. In all composites, the development of complex shear modulus G* had a latent period for $1{\sim}2$ seconds immediately after the start of light curing, and then increased rapidly during 10 seconds. 3. In all composites, the storage shear modulus G" increased steeper than the loss shear modulus G" during 10 seconds of light curing. 4. The complex shear modulus of Z1 was the highest, followed by CF, Z2, Z3, TC and DF the lowest. 5. Z1 was the fastest and DF was the slowest in the time to reach the complex shear modulus of 10 MPa.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources (디지털 산림자원정보 구축을 위한 최적의 지상LiDAR 스캔 경로 분석)

  • Ko, Chi-Ung;Yim, Jong-Su;Kim, Dong-Geun;Kang, Jin-Taek
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.245-256
    • /
    • 2021
  • This study was conducted to identify the applicability of a LiDAR sensor to forest resources inventories by comparing data on a tree's position, height, and DBH obtained by the sensor with those by existing forest inventory methods, for the tree species of Criptomeria japonica in Jeolmul forest in Jeju, South Korea. To this end, a backpack personal LiDAR (Greenvalley International, Model D50) was employed. To facilitate the process of the data collection, patterns of collecting the data by the sensor were divided into seven ones, considering the density of sample plots and the work efficiency. Then, the accuracy of estimating the variables of each tree was assessed. The amount of time spent on acquiring and processing the data by each method was compared to evaluate the efficiency. The findings showed that the rate of detecting standing trees by the LiDAR was 100%. Also, the high statistical accuracy was observed in both Pattern 5 (DBH: RMSE 1.07 cm, Bias -0.79 cm, Height: RMSE 0.95 m, Bias -3.2 m), and Pattern 7 (DBH: RMSE 1.18 cm, Bias -0.82 cm, Height: RMSE 1.13 m, Bias -2.62 m), compared to the results drawn in the typical inventory manner. Concerning the time issue, 115 to 135 minutes per 1ha were taken to process the data by utilizing the LiDAR, while 375 to 1,115 spent in the existing way, proving the higher efficiency of the device. It can thus be concluded that using a backpack personal LiDAR helps increase efficiency in conducting a forest resources inventory in an planted coniferous forest with understory vegetation, implying a need for further research in a variety of forests.

Analysis of growth environment by smart farm cultivation of oyster mushroom 'Chunchu No 2' (병재배 느타리버섯 '춘추 2호'의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Chan-Jung;Park, Hye-Sung;Lee, Eun-Ji;Kong, Won-Sik;Yu, Byeong-Kee
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.119-125
    • /
    • 2019
  • This study aims to report the results for the analysis of the growth environment by applying smart farm technology to "Chunchu No 2" farmers in order to develop an optimal growth model for precision cultivation of bottle-grown oyster mushrooms. The temperature, humidity, carbon dioxide concentration, and illumination data were collected and analyzed using an environmental sensor installed to obtain growth environment data from the oyster mushroom cultivator. Analysis of the collected temperature data revealed that the temperature at the time of granulation was $19.5^{\circ}C$ after scraping, and the mushroom was generated and maintained at about $21^{\circ}C$ until the bottle was flipped. When the fruiting body grew and approached harvest time, mushrooms were harvested while maintaining the temperature between $14^{\circ}C$ and $18^{\circ}C$. The humidity was maintained at almost 100% during the complete growth stage. Carbon dioxide concentration gradually increased until 3 days after the beginning of cultivation, and then increased rapidly to almost 5,500 ppm. From the 6th day, carbon dioxide concentration was gradually decreased through ventilation and was maintained at 1,600 ppm during harvest. Light intensity of 8 lux was irradiated up to day 6 after seeding, and growth was then continued while periodically irradiating 4 lux light. The fruiting body characteristics of "Chunchu No 2" cultivated in the farmhouse were as follows: pileus diameter of 26.5 mm and thickness of 4.9 mm, stipe thickness of 8.9 mm, and length of 68.7 mm. The fruiting body yield was 166.8 g/850 ml, and the individual weight was 12.8 g/10 units.

A Proposal for Korean armed forces preparing toward Future war: Examine the U.S. 'Mosaic Warfare' Concept (미래전을 대비한 한국군 발전방향 제언: 미국의 모자이크전 수행개념 고찰을 통하여)

  • Chang, Jin O;Jung, Jae-young
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.215-240
    • /
    • 2020
  • In 2017, the U.S. DARPA coined 'mosaic warfare' as a new way of warfighting. According to the Timothy Grayson, director of DARPA's Strategic Technologies Office, mosaic warfare is a "system of system" approach to warfghting designed around compatible "tiles" of capabilities, rather than uniquely shaped "puzzle pieces" that must be fitted into a specific slot in a battle plan in order for it to work. Prior to cover mosaic warfare theory and recent development, it deals analyze its background and several premises for better understanding. The U.S. DoD officials might acknowledge the current its forces vulnerability to the China's A2/AD assets. Furthermore, the U.S. seeks to complete military superiority even in other nation's territorial domains including sea and air. Given its rapid combat restoration capability and less manpower casualty, the U.S. would be able to ready to endure war of attrition that requires massive resources. The core concept of mosaic warfare is a "decision centric warfare". To embody this idea, it create adaptability for U.S. forces and complexity or uncertainty for the enemy through the rapid composition and recomposition of a more disag g reg ated U.S. military force using human command and machine control. This allows providing more options to friendly forces and collapse adversary's OODA loop eventually. Adaptable kill web, composable force packages, A.I., and context-centric C3 architecture are crucial elements to implement and carry out mosaic warfare. Recently, CSBA showed an compelling assessment of mosaic warfare simulation. In this wargame, there was a significant differences between traditional and mosaic teams. Mosaic team was able to mount more simultaneous actions, creating additional complexity to adversaries and overwhelming their decision-making with less friendly force's human casualty. It increase the speed of the U.S. force's decision-making, enabling commanders to better employ tempo. Consequently, this article finds out and suggests implications for Korea armed forces. First of all, it needs to examine and develop 'mosaic warfare' in terms of our security circumstance. In response to future warfare, reviewing overall force structure and architecture is required which is able to compose force element regardless domain. In regards to insufficient defense resources and budget, "choice" and "concentration" are also essential. It needs to have eyes on the neighboring countries' development of future war concept carefully.

  • PDF

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir (eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가)

  • Kwak, Tae-Soo;Kim, Won-Seok;Lee, Sun Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.272-279
    • /
    • 2021
  • A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

Analysis of Heating Effect of an Infrared Heating System in a Small Venlo-type Glasshouse (소형 벤로형 유리온실에서 적외선등 난방 시스템의 난방효과 분석)

  • Lim, Mi Young;Ko, Chung Ho;Lee, Sang Bok;Kim, Hyo Kyeong;Bae, Yong Han;Kim, Young Bok;Yoon, Yong Cheol;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • An infrared heating system, installed in a small venlo-type glasshouse ($280m^2$) in Gyeongsang National University, Jinju, Korea, was used to investigate its heating effect with potted Phalaenopsis, Schefflera arboricola 'Hongkong', Ficus elastica 'Variegata', and Rosa hybrida 'Yellow King' as the test plants. Temperature changes in test plants with the system turned 'On' and 'Off' were measured by using an infrared camera and the consumption of electricity by this infrared heating system was measured and analyzed. In potted Phalaenopsis, when the set air temperature of the greenhouse was $18^{\circ}C$, temperature of leaves and the growing medium were $22.8{\sim}27^{\circ}C$ and $21.3{\sim}24.3^{\circ}C$, respectively. In such tall plants as Schefflera arboricola 'Hongkong' and Ficus elastica 'Variegata', the upper part showed the highest temperature of 24.0 and $26.9^{\circ}C$, respectively. From the results of temperature change measurements, the plant temperatures were near or above the set point temperatures with some fluctuations depending on the position or distance from the infrared heating system. When air temperature between night and dawn dropped sharply, plant temperatures were maintained close to the set temperature ($18^{\circ}C$). There was a significant difference between 'On' and 'Off' states of the infrared heating system in average temperatures of root zone and leaf: 21.8 and $17.8^{\circ}C$ with the system 'On' and 20.4 and $15.5^{\circ}C$ with the system 'Off', respectively, in a cut rose Rosa hybrida 'Yellow King'. The heating load was about $24,850{\sim}35,830kcal{\cdot}h^{-1}$, which comes to about 27,000~40,000 won in Korean currency when calculated in terms of the cost of heating by a hot water heating system heated by petroleum. The cost for heating by the infrared heating system was about 35% of that of a hot water heating system. With the infrared heating system, the air temperature during the night was maintained slightly lower than the set point air temperature, probably due to the lack of air tightness of the glasshouse. Therefore, glasshouses with an infrared heating system requires further investigation including the installation space of the heat-emitting units, temperature sensor positions, and convection.