• Title/Summary/Keyword: 와이블 분포

Search Result 255, Processing Time 0.034 seconds

Determining Mechanical Properties of ZrO2 Composite Ceramics by Weibull Statistical Analysis (와이블 통계 해석에 의한 ZrO2 복합 세라믹스의 기계적 특성)

  • Kim, Seon Jin;Kim, Dae Sik;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.955-962
    • /
    • 2015
  • The Vickers test can be used for all types of materials, and it has one of the widest scales among hardness tests. The hardness may be considered as a probability variable when evaluating the mechanical properties of materials. In this study, we investigate the statistical properties of the bending strength and Vickers hardness in $ZrO_2$ monolithic and $ZrO_2/SiC$ composites depending on the amount of $TiO_2$ additives. The bending strength and Vickers hardness were found to agree well with the Weibull probability distribution. We evaluate the scale parameter and shape parameter in as-received $ZrO_2$ and $ZrO_2/SiC/TiO_2$ ceramics, as well as their heat treated ceramics. We also evaluate the parameters in accordance with the increase in in the indentation load.

자동차용 방열기의 수명분포 추정

  • Hong, Yeon-Ung;Gwon, Yong-Man
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.177-180
    • /
    • 2003
  • 본 연구에서는 자동차용 방열기의 수명분포를 일반적으로 기계류에 적용하는 와이블분포라 가정하고 실험실 데이터를 이용하여 추정한다. 방열기 수명시험시 고려해야할 요소를 방열량, 기밀성, 내압 성능, 압력캡 시험 등 11가지로 정하고 이에 대한 신뢰성 관점에서의 해석 및 MINITAB을 이용한 추정을 주요내용으로한다.

  • PDF

Reliability Analysis for Decoy using Maintenance Data (정비 데이터를 이용한 기만체계 신뢰도 분석)

  • Gwak, Hye-Rim;Hong, Seok-Jin;Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.82-88
    • /
    • 2018
  • The decoy defensive weapon system is a one-shot system. Reliability is maintained through periodic inspection and high reliability is required to confirm whether or not the functioning is normal after launch. The maintenance cycle of a decoy was set up without target reliability and reliability prediction during the development period. However, the number of operations in the military has been increasing, necessitating the optimization of the maintenance cycle. Reliability is analyzed using the maintenance data of a decoy operated for several decades and the optimal maintenance cycle is suggested. In chapter 2, data collection and classification methods are presented and analysis methodology is briefly introduced. In chapter 3, the data distribution analysis and fitness verification confirmed that applying the Weibull distribution is the most suitable for the maintenance data of the decoy. In chapter 4, we present the analysis result of percentile, survival probability and MTBF and the optimal maintenance cycle was derived from the reliability analysis. Finally, we suggest the application methods for this paper in the future.

Development of accelerated life test method for mechanical components using Weibull-IPL(Inverse Power Law) model (와이블-역승법을 이용한 기계류부품의 가속시험 방법 개발)

  • Lee, Geun-Ho;Kim, Hyoung-Eui;Kang, Bo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.445-450
    • /
    • 2003
  • This study was performed 10 develop the accelerated life test method using Weibull-IPL(Inverse Power Law) model for mechanical components. Weibull-IPL model is concerned with determining the assurance life with confidence level and the accelerated life test time From the relation of weibull distribution factors and confidence limit, the testing times on the no number of failure acceptance criteria arc determined. The mechanical components generally represent wear and fatigue characteristics as a failure mode. IPL based on the cumulative damage theory is applied effectively the mechanical components to reduce the testing time and to achieve the accelerating test conditions. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% confidence level for one test sample. According to IPL, because test time call be shorten in case increase test load test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7.

  • PDF

Estimation of sewer deterioration by Weibull distribution function (와이블 분포함수를 이용한 하수관로 노후도 추정)

  • Kang, Byongjun;Yoo, Soonyu;Park, Kyoohong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.251-258
    • /
    • 2020
  • Sewer deterioration models are needed to forecast the remaining life expectancy of sewer networks by assessing their conditions. In this study, the serious defect (or condition state 3) occurrence probability, at which sewer rehabilitation program should be implemented, was evaluated using four probability distribution functions such as normal, lognormal, exponential, and Weibull distribution. A sample of 252 km of CCTV-inspected sewer pipe data in city Z was collected in the first place. Then the effective data (284 sewer sections of 8.15 km) with reliable information were extracted and classified into 3 groups considering the sub-catchment area, sewer material, and sewer pipe size. Anderson-Darling test was conducted to select the most fitted probability distribution of sewer defect occurrence as Weibull distribution. The shape parameters (β) and scale parameters (η) of Weibull distribution were estimated from the data set of 3 classified groups, including standard errors, 95% confidence intervals, and log-likelihood values. The plot of probability density function and cumulative distribution function were obtained using the estimated parameter values, which could be used to indicate the quantitative level of risk on occurrence of CS3. It was estimated that sewer data group 1, group 2, and group 3 has CS3 occurrence probability exceeding 50% at 13th-year, 11th-year, and 16th-year after the installation, respectively. For every data groups, the time exceeding the CS3 occurrence probability of 90% was also predicted to be 27th- to 30th-year after the installation.

Evaluation of Statistical Fatigue Life of Hybrid Composite Joints in Low-Floor Bus (저상버스용 하이브리드 복합재 조인트부의 통계적 피로수명평가)

  • Jung, Dal-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1705-1713
    • /
    • 2010
  • The reliable fatigue life for hybrid composite joint structures was estimated by a statistical method for evaluating fatigue life; the results of the fatigue test varied widely. Cyclic bending tests were performed on a cantilever beam with a hybrid composite joint, which was developed for the body of a low-floor bus. In order to estimate the fatigue life of the hybrid composite joint structure by comparing the data obtained during the fatigue tests, the most suitable probabilistic density function among the normal, lognormal, and Weibull distributions was selected. The probabilistic-stress-life (P-S-N) curves calculated by using the selected Weibull distribution was suggested for process of statistical fatigue life estimation and reliability design.

A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses (시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법)

  • Chung, In-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF

Truncated Sequential Test Plan under Weibull Distribution (와이블 분포에서의 종결형 축차시험방안)

  • 정해성;차명수;오근태
    • Journal of Applied Reliability
    • /
    • v.3 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • Sequential test plans are characterized by decision rules for accepting or rejecting compliance, or continuing the test at my test time. They are determined by selected values of risks and discrimination ratio. The sequential test plans in the international standard such as MIL-HDBK-781A are based on the assumption that the underlying distribution of times between failures is exponential. In this paper, sequential test plans are extended to the Weibull distribution case. Simulation studies are performed to examine the reasonability in this extension.

  • PDF

Lifetime Performance Index for Weibull Distribution: Estimation and Applications (와이블 분포를 따를 때 수명성능지수의 추정과 활용)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.13 no.3
    • /
    • pp.191-206
    • /
    • 2013
  • Application areas for Lifetime Performance Index(LPI), a kind of process capability index to be frequently used as a means of measuring process performance are illustrated with examples. Statistical properties for maximum likelihood and unbiased estimators of LPI are evaluated and discussed under Weibull distribution with known shape parameter. Furthermore, guidelines for selecting an estimator of LPI are also presented.

이변량 와이블분포에서 시스템 신뢰도 추정

  • 박병구;윤상철;김미경
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.210-216
    • /
    • 1999
  • In this paper, we study the estimation of system reliability for the parallel system based on Spurrier and Weier [9] bivariate Weibul distribution. We assume that when one component fails, the workload of the remaining component becomes proportional to Øλ, where Ø〉λ 0. We obtain the maximum likelihood estimators for the parameters of system reliability, and by using the numerical method, study the effects of reliability for the Parallel system.

  • PDF