• Title/Summary/Keyword: 와류진동

Search Result 158, Processing Time 0.024 seconds

Control of Sound Pressure Inside a Flow Excited Resonator (유동가진 공명기 내부의 음압 제어)

  • Hwang, Cheol-Ho;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.196-199
    • /
    • 2005
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the loading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

  • PDF

An Analysis of High Speed Impulsive Noise of Rotating Blades Using Frequency Domain Method (주파수 영역 기법을 이용한 회전익의 고속 충격소음 해석)

  • 윤태석;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.443-449
    • /
    • 1996
  • 헬리콥터, 팬, 프로펠러, 터이빈같이 회전익에서 유체역학적 소음이 발생하는 장치의 설계에 있어서는 공기 역학적 성능 분석과 함께 소음에 대한 해석이 절대적으로 필요하다. 근래에 들어와서 소음에 대한 관심이 급격히 증가하고 공항 주변에서의 국제적인 규약들은 낮은 소음 수준(low noise level)을 규정하고 있으며, 이에 따라서 소음을 감소시키려는 연구가 매우 활발히 진행되고 있는 실정이다. 더욱이 컴퓨터의 냉각 팬을 비롯한 공조기기 및 산업기기에 사용되는 회전기계에서 발생되는 소음의 저감은 보다 더 쾌적한 환경을 요구하는 사회적 요구에 부합하면서 공력소음의 연구 분야가 더 넓어지고 있다. 본 논문에서는 소음예측 방법중의 하나인 음향상사(acoustic analogy)를 주파수 영역 방법(frequency domain method)을 이용하여 헬리콥터 블레이드의 고속 충격소음(High Speed Impulsive Noise)을 해석한다. 고속 충격소음은 블레이드-와류 상호작용 소음과 더불어 헬리콥터의 지배적인 소음원으로서 깃끝 속도가 큰 전진 수평비행(forward level flight)또는 제자리 비행(hovering flight)시 발생하는 소음으로 블레이드의 깃끝 마하수(critical Mach number)보다 크거나 비슷할 경우 충격파의 교란에 의해서 일어나는 충격적인 소음을 말한다. 고속 충격소음은 고주파수 스펙트럼 성분과 큰 소음강도를 가지고 있기 때문에 날카로운 금속성의 소리를 내며 먼 거리까지 전파되는 특징을 가지고 있다.

  • PDF

Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant (대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진)

  • Bang, Kyung-Bo;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

Review of the Flame Stabilization Techniques using Cavity (Cavity를 이용한 화염안정화 기술 리뷰)

  • Lee, Tae Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.104-111
    • /
    • 2016
  • The flame stabilization is one of the topics which have to be solved for the airbreathing propulsion systems, using the entering air which is supersonic velocity as an oxygen sources. Making a recirculation zone with an eddy flow, installed the reducing velocity devices such as the bluff body, is the typical method of the flame stabilization. Recently using a cavity flame stabilization at the wall is an emerging technique as an effective method which extends the stabilization zone, and the related research papers have been published on the flow separation and reattachment, pressures and oscillations including length/depth ratios in the cavities. Even though, still there are lots of topics to study more in the cavity flame stabilization field as the preceding techniques, as well as the research and the development of the airbreathing propulsion system itself.

A study on the flow induced vibration on a heat exchanger circular cylinder (열교환 단일 원관의 유동 유발 진동 특성에 관한 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single circular cylinder was established from the present CFD study.

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구)

  • Kim, Hun;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.579-589
    • /
    • 2015
  • This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

Visualization of Vortex Lock-on to Oscillatory Incident Flow in the Cylinder Wake Using Time-Resolved PIV (고속 PIV계측에 의한 실린더 근접후류 공진 유동 가시화)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1353-1361
    • /
    • 2001
  • Vortex lock-on or resonance behind a circular cylinder is visualized using a time-resolved PW when a single frequency oscillation is superimposed on the mean incident velocity. For vector processing, a cross-correlation algorithm in conjunction with a recursive correlation and interrogation window shifting techniques is used. Measurements are made of the Karmas and streamwise vertices in the wake-transition regime at Reynolds lumber 360. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the Karman vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwiee vortices, which lead? to a strong three-dimensional motion.

  • PDF

Excessive Vibration of the Fan-duct Systems in 500 MW Power Plant Boilers Due to Inlet Cone Vortex (Inlet Cone Vortex에 의한 500 MW급 발전용 보일러 홴-덕트 시스템의 과대진동)

  • Kim, Cheol Hong;Ju, Young Ho;Byun, Hyung Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.116-121
    • /
    • 2000
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in the fan-duct systems of fossil fueled boilers. We measured static pressure variation(pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure Pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

  • PDF

NUMERICAL STUDY OF MODULATED TAYLOR-COUETTE FLOW (진동하는 Taylor-Couette 유동에 대한 수치적 연구)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Mutabazi, Innocent
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.32-39
    • /
    • 2010
  • In this study, we consider Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the mean angular velocity, amplitude and frequency of the oscillation, we investigate the characteristics of modulated Taylor vortices. At a constant mean angular velocity, Taylor vortices intensify as the amplitude increases and frequency decreases. The axial wavenumber is calculated by spectral analysis. When the frequency varies, the axial wavenumber does not change at a constant mean angular velocity and amplitude. But, the axial wavenumber increases, as the mean angular velocity increases.

The Numerical Simulation of the Airflow for Reducing Vibrations of an Actuator in HDDs (하드디스크 드라이브 내부 유동에 의한 액추에이터의 진동 저감을 위한 수치해석 연구)

  • Park, Jae-Hyun;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.664-669
    • /
    • 2003
  • Recently, the recording density of hard disk drives has improved at an annual percentage rate of 100%. Therefore for faster access, higher disk rotational speeds will be required. The influence of the airflow produced by the rotation of a disk on the positioning accuracy has become a serious topic of research and the aerodynamic aspect of hard disk drives is now quite considerable with the increases in recording density and higher rotational speeds. Unsteady airflow in an actual hard disk drive is numerically simulated by using LES(Large Eddy Simulation) technique, we could predicted and aerodynamic mechanism that was related actuators' surroundings in HDD. At a result, with modifying the various shapes of the E-block and Damper, we estimated the characteristic of the influence of airflow in HDDs.

  • PDF