DOI QR코드

DOI QR Code

수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

  • 김훈 (부산대학교 기계공학부) ;
  • 임희창 (부산대학교 기계공학부)
  • Kim, Hun (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lim, Hee-Chang (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 투고 : 2015.02.12
  • 심사 : 2015.05.19
  • 발행 : 2015.07.01

초록

본 연구의 목적은 수직으로 강제 진동하는 소수성 표면 위에 놓인 액적의 유동 및 증발 특성을 이해하는 것이다. 액적의 공진주파수를 예측하기 위해서 Lamb과 Strani and Sabetta의 이론적 고유진동수식을 이용하였고, 실험값과 비교하여 보다 근접한 고유진동수 식에 대해 타당성을 검증하였다. 액적의 형상 및 내부 유동을 가시화하기 위해 초고속카메라, 초접사렌즈 그리고 연속광을 사용하여 진동하는 소수성 표면 위 액적의 유동 및 증발 특성을 확인하였다. 그 결과 각각의 모드에서 액적은 다양한 형상을 가졌으며, 각각의 액적 내부에서 복잡한 와류가 관찰되었다. 일반적으로, 유동흐름이 대칭축을 따라 위로 상승하여 액적상단에서 표면을 따라 접촉선부근으로 이동하였고, 2차, 4차 모드는 분기형, 6차, 8차 모드는 큰 타원형의 유동패턴을 갖는 것을 확인하였다. 여러 가지 모드 중 4차 모드에서 가장 빠른 유동속도를 가졌으며, 다음은 8, 6, 2차 모드 순서였다. 네 가지 진동 모드에서의 증발률은 4, 8, 6, 2차 모드 순서로 빨랐으며, 각각의 공진에서는 그 주위 주파수 영역보다 빠른 증발률을 보였다. 마지막으로 진동을 이용한 액적의 증발은 4차 모드에서 진행되어야 보다 효율적인 진동 증발을 유도할 수 있다.

This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

키워드

참고문헌

  1. Kelvin, 1890, Mathematical and Physical Papers, Vol. 3, Clay, pp. 384.
  2. Rayleigh, L., 1894, The Theory of Sound, Macmillan, New York.
  3. Lamb, H., 1932, Hydrodynamics, Cambridge Univ. Press, New York, pp. 475.
  4. Strani, M., and Sabetta, F., 1984, "Free Vibrations of a Drop in Partial Contact with a Solid Support," J. Fluid. Mech, Vol. 141, pp. 233-247. https://doi.org/10.1017/S0022112084000811
  5. Daniel, S., Sircar, S., Gliem, J. and chaudhury, M. K., 2004, "Ratcheting Motion of Liquid Drops on Gradient Surfaces," Langmuir, Vol. 20, pp. 4085-4098. https://doi.org/10.1021/la036221a
  6. Daniel, S., Chaudhury, M. K. and De Gennes, P. G., 2005, "Vibration-actuated Drop Motion on Surfaces for Batch Microfluidic Processes," Langmuir, Vol. 21, pp. 4240-4248. https://doi.org/10.1021/la046886s
  7. Dong, L., Chaudhury, A. and Chaudhury, M. K., 2006, "Lateral Vibration of a Water Drop and its Motion on a Vibrating Surface," Eur. Phys. J. E, Vol. 21, pp. 231-242. https://doi.org/10.1140/epje/i2006-10063-7
  8. Noblin, X., Buguin, A. and Brochard-Wyart, F., 2009, "Vibration of Sessile Drops," Eur. Phys. J. Special Topics, Vol. 166, pp. 7-10. https://doi.org/10.1140/epjst/e2009-00869-y
  9. Brunet, P., Eggers, J. and Deegan, R. D., 2009, "Motion of a Drop Driven by Substrate Vibrations," Eur. Phys. J. Special Topics, Vol 166, pp. 11-14. https://doi.org/10.1140/epjst/e2009-00870-6
  10. McHale, G., Elliott, S. J., Newton, M. I., Herbertson, D. L. and Esmer, K., 2009, "Levitation-Free Vibrated Droplets: Resonant Oscillations of Liquid Marbles," Langmuir, Vol. 25, pp. 529-533. https://doi.org/10.1021/la803016f
  11. Hong, F. J., Jiang, D. D. and Cheng, P., 2012, "Frequency-dependent Resonance and Asymmetric Droplet Oscillation under ac Electrowetting on Coplanar Electrodes," J. Micromech. Microeng, Vol. 22, pp. 1-9.
  12. Oh, J. M., Ko, S. H. and Kang, K. H., 2008, "Shape Oscillation of a Drop in AC Electrowetting," Langmuir, Vol. 24, pp. 8379-8386. https://doi.org/10.1021/la8007359
  13. Wachters L. and Westerling N., 1966, "The Heat Transfer from a Hot Wall to Impinging Water Drops in the Spheroidal State," Chem. Eng. Sci. Vol. 21, pp. 1181.
  14. Depaoli, D. W., Feng, J. Q., Basaran, O. A. and Scott, T. C., 1995, "Hysteresis in forced Oscillations of Pendant Drops," Phys. Fluids, Vol. 7, pp. 1181-1183. https://doi.org/10.1063/1.868576
  15. Wilkes, E. D. and Basaran, O. A., 1997, "Forced Oscillations of Pendant (Sessile) Drops," Phys. Fluids, Vol. 9, pp. 1512-1528. https://doi.org/10.1063/1.869276
  16. Kim, H. Y., 2004, "Drop Fall-off from the Vibrating Ceiling," Phys. Fluids, Vol. 14, pp. 474.
  17. Brunet, P., Eggers, J. and Deegan, R. D., 2007, "Vibration-Induced Climbing of Drops," Phys. Rev. Lett, Vol. 99, pp. 144501-1-4. https://doi.org/10.1103/PhysRevLett.99.144501
  18. Matsumoto, T., Fujii, H., Ueda, T., Kamai, M. and Nogi, K., 2005, "Measurement of Surface Tension of Molten Copper using the Free-fall Oscillating Drop Method," Meas. Sci. Technol, Vol. 16, pp. 432-437. https://doi.org/10.1088/0957-0233/16/2/014
  19. Yamakita, S., Matsui, Y. and Shiokawa, S., 1999, "New Method for Measurement of Contact Angle (Droplet Free Vibration Frequency Method)," Jpn. J. Appl. Phys, Vol. 38, pp. 3127-3130. https://doi.org/10.1143/JJAP.38.3127
  20. Makino, K. and Michiyosi, I., "The Behavior of a Water Droplet on Heated Surfaces," Int. J. Heat Transfer, Vol. 27, pp. 781-791.
  21. Scriven, L. E. and Sternling, C. V., 1960, "The Marangoni Effects" Nature, Vol. 187, pp. 186-188. https://doi.org/10.1038/187186a0
  22. Hu, H. and Larson, R.G., 2006, "Marangoni Effect Reverses Coffee-Ring Depositions," J. Phys. Chem. B, Vol. 110, pp. 7090-7094. https://doi.org/10.1021/jp0609232
  23. Xu, X. F. and Luo, J. b., 2007, "Marangoni Flow in an Evaporating Water Droplet," Appl. Phys. Letter, Vol. 91, pp. 124102. https://doi.org/10.1063/1.2789402
  24. Wang, H. T., Wang, Zh. B., Huang, L. M., Mitra, A. and Yan, Y. S., 2001, "Surface Patterned Porous Films by Convection-Assisted Dynamic Self-Assembly of Zeolite Nanoparticles," Langmuir, Vol. 17, pp. 2572-2574. https://doi.org/10.1021/la0102509
  25. Truskett, V. and Stebe, K. j., 2003, "Influence of Surfactants on an Evaporating Drop: Fluorescence Images and Particle Deposition Patterns," Langmuir, Vol. 19, pp. 8271-8279. https://doi.org/10.1021/la030049t
  26. Oh, J. M., Legendre, D. and Mugele, F., 2012, "Shaken not Stirred On Internal - Flow Patterns in Oscillating Sessile Drops," Europhysics Letters, Vol. 98, pp. 34003. https://doi.org/10.1209/0295-5075/98/34003
  27. Lee, S. M. and Kang, I. S., 1999, "Three-dimensional Analysis of the Steady-state Shape and Small-amplitude Oscillation of a Bubble in Uniform and Non-uniform Electric Fields," J. Fluid. Mech, Vol. 384, pp. 59-91. https://doi.org/10.1017/S0022112098004133
  28. Oh, J. M., Kim, P. J. and Kang, I. S., 2001, "Chaotic Oscillation of a Bubble in a Weakly Viscous Dielectric Fluid under Electric Fields," Phys. Fluids, Vol. 13, No. 10, pp. 2820-2830. https://doi.org/10.1063/1.1400135
  29. Kang, K. H., Lee, S. J., Lee, C. M. and Kang, I. S., 2004, "Quantitative Visualization of Flow Inside an Evaporating Droplet using the Ray Tracing Method," Meas. Sci. Technol., Vol. 15, pp. 1104-1112. https://doi.org/10.1088/0957-0233/15/6/009
  30. Picknett, R. G. and Bexon, R., 1976, "The Evaporation of Sessile or Pendant Drops in Still Air," Journal of colloid and Interface Science, Vol. 61, No. 2, pp. 336-350. https://doi.org/10.1016/0021-9797(77)90396-4