• Title/Summary/Keyword: 와류진동

Search Result 158, Processing Time 0.025 seconds

Analysis of Vortex Vibration by Using the FSI Technique (FSI 기법을 이용한 와류진동 해석)

  • Kim, Dae-Geun;Kim, Sung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.754-758
    • /
    • 2010
  • 케이블 교량에서 발생하는 사장케이블의 진동현상에 대한 현상학적 특성을 명확히 이해해야, 사장케이블의 적합한 제진설계가 가능하다. 본 연구에서는 유체의 흐름과 구조물의 진동을 동적으로 연계하여 해석하기 위하여, ADINA의 CFD 및 Structure 코드를 동적으로 연계하는 FSI(Fluid Flow with Structure Interaction) 기법을 이용하였다. 바람으로 인해 이중원형실린더의 풍상측과 풍하측 실린더에서는 와류가 방출되면서 외력이 작용하게 되며, 이러한 공기력은 풍하측 실린더의 고유진동 운동과 함께 와류진동현상을 유발한다. 본 연구에서는 풍하측 실린더의 와류진동 현상의 해석에 주안점을 두었다. 본 연구에서는 흐름의 레이놀즈수와 이중원형실린더에 대한 바람의 입사각을 변화시키며 풍하측 실린더에서 발생하는 와류진동의 크기를 분석하였다. 본 연구결과, 유입풍속 및 바람의 입사각에 따라 이중원형실린더에서 발생하는 일반적인 와류방출현상과 풍하측 실린더에 작용하는 공기력 및 변위양상을 예측할 수 있었다. 특히, 바람의 입사각이 $15^{\circ}$인 경우에는 풍하측 실린더에서 방출되는 와류로 인해 풍하측 실린더에는 비대칭의 공기력이 작용하며, 이는 풍하측 실린더가 2사분면에서 4사분면 방향으로 진동하는 원인이 되는 것으로 판단된다.

  • PDF

Unsupervised Vortex-induced Vibration Detection Using Data Synthesis (합성데이터를 이용한 비지도학습 기반 실시간 와류진동 탐지모델)

  • Sunho Lee;Sunjoong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.315-321
    • /
    • 2023
  • Long-span bridges are flexible structures with low natural frequencies and damping ratios, making them susceptible to vibrational serviceability problems. However, the current design guideline of South Korea assumes a uniform threshold of wind speed or vibrational amplitude to assess the occurrence of harmful vibrations, potentially overlooking the complex vibrational patterns observed in long-span bridges. In this study, we propose a pointwise vortex-induced vibration (VIV) detection method using a deep-learning-based signalsegmentation model. Departing from conventional supervised methods of data acquisition and manual labeling, we synthesize training data by generating sinusoidal waves with an envelope to accurately represent VIV. A Fourier synchrosqueezed transform is leveraged to extract time-frequency features, which serve as input data for training a bidirectional long short-term memory model. The effectiveness of the model trained on synthetic VIV data is demonstrated through a comparison with its counterpart trained on manually labeled real datasets from an actual cable-supported bridge.

A Study on Vortex-Induced Vibration Characteristics of Hydrofoils considering High-order Modes (고차모드를 고려한 수중날개 와류기인 진동특성 연구)

  • Choi, Hyun-Gyu;Hong, Suk-Yoon;Song, Jee-Hun;Jang, Won-Seok;Choi, Woen-Sug
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.377-384
    • /
    • 2022
  • Vortex-induced vibration (VIV) occurs owing to the vortex generated from the back side of the appendages of ships and submarines during operation. Recently, the importance of high-order modes (HOMs) vibration and fatigue failure has become increasingly emphasized by increasing the speed of ships and the size of structures. In addition, predicting the vibration of HOMs is significantly necessary as the VIV becomes stronger in the fast flow speed condition than in the low flow speed condition. This study introduces a methodology according to HOMs hybrid Fluid Structure Interaction (FSI) for predicting the HOMs VIV on the hydrofoils. The HOMs FSI system is verified by comparing the VIV results from the FSI simulation with the experimental results. Finally, the effectiveness of the HOMs FSI is determined by applying the maximum von-Mises stress obtained from the VIV on the hydrofoil to the S-N curve released from Det Norske Veritas (DNV). VIV results from the HOMs FSI include the lock-in characteristics as well as a significant increase of more than 10 times compared with that of low-order modes (LOMs) FSI. In the future works, advanced studies will be required for improving cantilever boundary conditions and the shape of hydrofoils.

Estimation of Wind Resistance Capacity of Nielsen Arch Bridge Based on Measured Data From Monitoring System (모니터링 시스템의 계측자료를 기반으로 한 닐슨아치 교량의 내풍 안정성 평가)

  • Lee, Deok Keun;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.56-64
    • /
    • 2013
  • The wind resistant capacity of bridges with a span of less than 200m is typically evaluated by Wind Resistant Design Manual for Highway Bridges in Japan. Also, the first vertical frequency plays an important role in the evaluation of their aerodynamic performance. An unexpected vortex-induced vibration of Nielsen arch bridge with span of 183m designed by this manual has been measured by monitoring system during typhoon. The amplitude of vibrations was about 2 times than the allowable vibration displacement. This paper presents the feature of vortex-induced vibration of this Nielsen arch bridge based on measured wind velocity, wind direction, and responses at midspan of main girder. From the result of FFT, the $1^{st}$ mode shape of the bridge is antisymmetric and the $2^{nd}$ is symmetric. Also, the dominant vibration of the bridge is the $2^{nd}$ vertical mode. According to these results, the $2^{nd}$ vertical vibration mode of this Nielsen arch bridge is prior to the first for the estimation of wind resistance capacity.

Vortex Shedding Analysis for Two Staggered Circular Cylinders (이중원형실린더에서 발생하는 와류방출 해석)

  • Kim, Dae-Geun;Kim, Sung-Man;Kim, Dong-Ok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.919-923
    • /
    • 2009
  • 케이블 교량에서 발생하는 사장케이블의 진동현상에 대한 현상학적 특성을 명확히 이해해야, 사장케이블의 적합한 제진설계가 가능하다. 본 연구에서는 ADINA CFD 코드를 이용하여, 이중원형실린더에서 발생하는 와류방출현상과 실린더에 작용하는 외력을 해석함으로써, 사장케이블에서 발생하는 진동현상의 원인을 규명하고자 하였다. 이를 위하여 본 연구에서는 흐름의 레이놀즈수, 실린더간 간격과 이중원형실린더에 대한 바람의 입사각을 변화시키며 이중원형실린더에서 발생하는 와류방출현상과 이로 인해 실린더에 작용하는 항력, 양력과 같은 외력을 분석하였다. 분석 결과, 풍상측 케이블에는 일방향의 항력이 주로 작용하므로 케이블 진동이 제한적으로 발생하나, 풍하측 케이블에는 항력과 같은 규모의 진동하는 양력이 작용하는 것으로 나타났으며 이로 인해 풍하측 케이블에서 진동이 크게 발생하는 것으로 나타났다.

  • PDF

Dynamic Responses of Offshore Meteorological Tower Under Wind and Wave (바람과 파랑을 받는 해상 풍력 기상탑의 동적 응답)

  • Kwon, Soon-Duck
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.171-177
    • /
    • 2018
  • In order to investigate the cause of damage of the offshore meteorological tower, the measured wind speed data were analyzed, the dynamic displacement due to fluctuating wind load and wave load was calculated, and the fatigue was examined for vortex-induced vibration. It was confirmed from the results that the vibration lasting for four hours occurred in the meteorological tower when the maximum wind speeds for 10 minutes were compared for both the vane anemometer and ultrasonic anemometer. The effect of the gust wind on the dynamic response of the meteorological tower was greater than the wave. However, the combined forces acting on the meteorological tower was much lower than the design force even though the wind and wave loads were simultaneously applied. The vortex-induced vibration seemed to be cause of the fatigue failure in the connecting bolts. The destruction of the offshore meteorological tower was considered to be a vortex-induced vibration, not a fluctuating fluid flows.

Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model (연계 후류진동 모델 적용을 통한 와류방출 가진에 의한 라이저의 동적해석)

  • 홍남식;허택녕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-115
    • /
    • 2000
  • Numerical model is proposed to estimate dynamic responses of riser with vortex excitation by inline current. Galerkin's finite decomposition method is implemented for the development of a numerical model and vortex excitation is modeled by coupled wake oscillator proposed by Blevins. The numerical results are inspected through the physical interpretation to give the verification and usefulness of the suggested numerical model.

  • PDF

Effect of Damkohler Number on Vortex-Heat Release Interaction in a Dump Combustor (덤프 연소기내의 와류-열방출의 관계에 대한 Damkohler 수의 영향)

  • Yu Kenneth H;Yoon Youngbin;Ahn Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Oscillating heat release associated with periodic vortex-flame interaction was investigated experimentally. Turbulent jet flames were stabilized with recirculating hot products in a dump combustor, and large-scale periodic vortices were imposed into the jet flame by acoustic forcing. Forcing frequencies and operating parameters were adjusted to simulate unstable combustor operation in practical combustors. The objectives were to characterize vortex-heat release interaction that leads to unwanted heat release fluctuations and to identify the proper fuel injection pattern that could be used for actively suppressing such fluctuations. Phase-resolved CH* chemiluminescence and schlieren images were used as diagnostic tools. The results were compared at corresponding phases of vortex shedding cycle.

  • PDF