바람과 파랑을 받는 해상 풍력 기상탑의 동적 응답

Dynamic Responses of Offshore Meteorological Tower Under Wind and Wave

  • 투고 : 2018.11.27
  • 심사 : 2018.12.24
  • 발행 : 2018.12.31

초록

본 연구에서는 해상 풍력용 기상탑의 파단 원인을 찾기 위하여 실측된 풍속 자료를 분석하고, 변동 풍하중과 파랑하중에 의한 동적 변위를 산정하였으며, 와류진동에 대한 피로 검토를 수행하였다. 그 결과를 보면, 베인 풍속계와 초음파 풍속계의 10분 최대 풍속을 비교하여 기상탑에서 4시간 지속된 진동이 발생했음을 확인하였다. 그리고 파랑하중보다 풍하중이 기상탑의 동적 응답에 미치는 영향이 훨씬 크지만, 두 하중이 동시에 작용해도 기상탑의 부재력이 설계력보다 훨씬 낮아서 직접적인 파단의 원인이 아닌 것으로 나타났다. 하지만 와류진동은 연결부 볼트에서 피로 파괴를 일으키는 것으로 나타나서, 기상탑의 파단 원인은 유체의 변동 성분이 아닌 와류진동인 것으로 판단된다.

In order to investigate the cause of damage of the offshore meteorological tower, the measured wind speed data were analyzed, the dynamic displacement due to fluctuating wind load and wave load was calculated, and the fatigue was examined for vortex-induced vibration. It was confirmed from the results that the vibration lasting for four hours occurred in the meteorological tower when the maximum wind speeds for 10 minutes were compared for both the vane anemometer and ultrasonic anemometer. The effect of the gust wind on the dynamic response of the meteorological tower was greater than the wave. However, the combined forces acting on the meteorological tower was much lower than the design force even though the wind and wave loads were simultaneously applied. The vortex-induced vibration seemed to be cause of the fatigue failure in the connecting bolts. The destruction of the offshore meteorological tower was considered to be a vortex-induced vibration, not a fluctuating fluid flows.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. 권순덕. "세장 구조 부재의 와류진동 평가 방법." 한국풍공학회 논문집. 5(1). 2001.
  2. 권순덕. "변동 풍하중을 받는 교량의 실용적인 피로 평가." 한국풍공학회 논문집. 11(2). 2007.
  3. 권순덕, 이승호. "케이블 교량의 등가 정적 버페팅 하중." 한국전산구조공학회 학술발표회. 2011.
  4. 한국도로교통협회. 도로교설계기준한계상태설계법. 2010.
  5. 한종욱, 박영석. "고장력 볼트의 인장피로강도에 관한 실험적 연구." 대한토목학회 논문집. 28(2A). 2008.
  6. AASHTO. Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals. 2001.
  7. Brebbia, C.A., Walker, S. Dynamic analysis of offshore structures. Newnes-Butterworths. 1979.
  8. Chakrabarti, S.K. Hydrodynamics of offshore structures. Springer. 1987.
  9. Chien, C.W., Jang, J.J. "Case study of wind-resistant design and analysis of high mast structures based on different wind codes." J. of Marine Science and Technology. 16(4). 2008.
  10. DNV. Guidelines for Design of Wind Turbines. Det Norske Veritas. DNV-OS-J101. 2007.
  11. Dyrbye, C., Hansen, S.O., Wind Loads on Structures, John Wiley & Sons, 1999.
  12. Eurocode. Actions on structures - Part 1-4: General actions - Wind actions. 1991.
  13. Giosan, I. "Vortex Shedding Induced Loads on Free Standing Structures." Structural Vortex Shedding Response Estimation Methodology and Finite Element Simulation. Valmont West Coast Engineering. 2013.
  14. Holmes, J.D. "Effective static load distributions in wind engineering." J. of Wind Engineering and Industrial Aerodynamics, 90(2). 2002.
  15. Kasperski, M., Niemann, H.J. "The LRC (Load-response-correlation) method: a general method of estimating unfavorable wind load distributions for linear and nonlinear structural behavior." J. Wind Engineering and Industrial Aerodynamics, 43(1). 1992.
  16. Naudascher, E. and Rockwell, D., Flow-Induced Vibrations- An Engineering Guide, Dover Publications, 2005.
  17. Ruscheweyh, H. "Straked in-line steel stacks with low mass damping." J. of Wind Engineering and Industrial Aerodynamics 8. 1981.
  18. Simiu, E. & Scanlan, R. H., Wind Effects on Structures, John Wiley & Sons, 1996.
  19. Wong, H.Y., Kokkalis, A. "A comparative study of three aerodynamic devices for suppressing vortex-induced oscillation." J. of Wind Engineering and Industrial Aerodynamics. 10(1). 1982.
  20. Zdravkovich, M.M. "Reduction of effective of means for suppressing wind-induced oscillation." Engineering Structures. 6. 1984.