• Title/Summary/Keyword: 온라인 학습신경망

Search Result 68, Processing Time 0.026 seconds

Hangul Handwriting Recognition using Recurrent Neural Networks (순환신경망을 이용한 한글 필기체 인식)

  • Kim, Byoung-Hee;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.316-321
    • /
    • 2017
  • We analyze the online Hangul handwriting recognition problem (HHR) and present solutions based on recurrent neural networks. The solutions are organized according to the three kinds of sequence labeling problem - sequence classifications, segment classification, and temporal classification, with additional consideration of the structural constitution of Hangul characters. We present a stacked gated recurrent unit (GRU) based model as the natural HHR solution in the sequence classification level. The proposed model shows 86.2% accuracy for recognizing 2350 Hangul characters and 98.2% accuracy for recognizing the six types of Hangul characters. We show that the type recognizing model successfully follows the type change as strokes are sequentially written. These results show the potential for RNN models to learn high-level structural information from sequential data.

Feature Extraction by Neural Network for On-line Recognition of Korean Characters (온라인 한글인식을 위한 특징추출 신경망에 관한 연구)

  • Kim, Gil-Jung;Choi, Sug;Nam, Ki-Gon;Yoon, Tae-Hoon;Kim, Jae-Chang;Park, Ui-Yul;Lee, Yang-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.2
    • /
    • pp.159-167
    • /
    • 1992
  • This paper describes a feature extraction process by using a multi-layer neural network and is applied to the Korean stroke pattern for on line hand written character recognition, In the first layer the features are detected during the writing process and in the second layer the stroke specific features are extracted. A modified Masking field algorithm for direction co9nstancy has been used in this neural network and the resulting action potential of stroke specific features represents statistical distribution of the features in the on-line input stroke pattern and these results can be used in the recognition of on-line hand written Korean characters successfully.

  • PDF

Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network (신경회로망을 이용한 유도전동기의 속도 센서리스 방식에 대한 비교)

  • 국윤상;김윤호;최원범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • 일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.

  • PDF

Design and Implementation for Adaptive Learning System based Dynamic Contents Using Fuzzy Neural Network (퍼지신경회로망을 이용한 동적 학습내용 기반 적응형 학습시스템의 설계 및 구현)

  • Park, Tae-O;Hwang, Jin;Lee, Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.761-763
    • /
    • 2008
  • 최근 온라인교육의 필요성이 높아지고 요구 수준이 커짐에 따라 교육 서비스를 제공하는 시스템의 지능화된 처리능력이 필요하다. 퍼지신경회로망은 각각의 가중치(weight)를 갖는 채널로 연결한 망형태의 계산모델이다. 퍼지신경회로망을 학습시스템에 적용하여 학습자의 문항테스트 결과에서 학습과정을 재설정 할 수 있는 출력 값을 생성한다. 적응형 학습시스템은 퍼지신경회로망을 적용하여 개별화된 강의 코스로 학습을 진행하고 결과의 feedback을 통해 학습자의 최적 커리큘럼을 찾아내는 방법을 구현하였다.

On-line Vector Quantizer Design Using Simulated Annealing Method (Simulated Annealing 방법을 이용한 온라인 벡터 양자화기 설계)

  • Song, Geun-Bae;Lee, Haeng-Se
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.343-350
    • /
    • 2001
  • 백터 양자화기 설계는 다차원의 목적함수를 최소화하는 학습 알고리즘을 필요로 한다. 일반화된 Lloyd 방법(GLA)은 벡터 양자화기 설계를 위해 오늘날 가장 널리 사용되는 알고리즘이다. GLA 는 일괄처리(batch) 방식으로 코드북을 생성하며 목적함수를 단조 감소시키는 강하법(descent algorithm)의 일종이다. 한편 Kohonen 학습법(KLA)은 학습벡터가 입력되는 동안 코드북이 갱신되는 온라인 벡터 양자화기 설계 알고리즘 이다. KLA는 원래 신경망 학습을 위해 Kohonen에 의해 제안되었다. KLA 역시 GLA와 마찬가지로 강하법의 일종이라 할 수 있다. 따라서 이들 두 알고리즘은, 비록 사용하기 편리하고 안정적으로 동작을 하지만, 극소(local minimum) 점으로 수렴하는 문제를 안고 있다. 우리는 이 문제와 관련하여 simulated annealing(SA) 방법의 응용을 논하고자 한다. SA는 현재까지 극소에 빠지지 않고 최소(global minimum)로 수렴하면서, 해의 수렴이 (통계적으로) 보장되는 유일한 방법이라 할 수 있다. 우리는 먼저 GLA에 SA를 응용한 그 동안의 연구를 개괄한다. 다음으로 온라인 방식의 벡터 양자화가 설계에 SA 방법을 응용함으로써 SA 방법에 기초한 새로운 온라인 학습 알고리즘을 제안한다. 우리는 이 알고리즘을 OLVQ-SA 알고리즘이라 부르기로 한다. 가우스-마코프 소스와 음성데이터에 대한 벡터양자화 실험 결과 제안된 방법이 KLA 보다 일관되게 우수한 코드북을 생성함을 보인다.

  • PDF

A Study on Insulation Degradation Diagnosis Using a Neural Network (신경회로망을 이용한 절연 열화진단에 관한 연구)

  • 박재준
    • The Journal of Information Technology
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 1999
  • In this paper, we purpose automatic diagnosis in online, as the fundamental study to diagnose the partial discharge mechanism and to predict the lifetime by introduction a neural network. In the proposed method, we use AE(acoustic emission) sensing system and calculate a quantitative statistic parameter by pulse number and amplitude. Using statically parameters such as the center of gravity(G) and the gradient if the discharge distribute(C), we analyzed the early stage and the middle stage. the quantitative statistic parameters are learned by a neural network. The diagnosis of insulation degradation and a lifetime prediction by the early stage time are achieved. On the basis of revealed excellent diagnosis ability through the neural network learning for the patterns during degradation, it was proved that the neural network is appropriate for degradation diagnosis and lifetime prediction in partial discharge.

  • PDF

Online Hard Example Mining for Training One-Stage Object Detectors (단-단계 물체 탐지기 학습을 위한 고난도 예들의 온라인 마이닝)

  • Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.5
    • /
    • pp.195-204
    • /
    • 2018
  • In this paper, we propose both a new loss function and an online hard example mining scheme for improving the performance of single-stage object detectors which use deep convolutional neural networks. The proposed loss function and the online hard example mining scheme can not only overcome the problem of imbalance between the number of annotated objects and the number of background examples, but also improve the localization accuracy of each object. Therefore, the loss function and the mining scheme can provide intrinsically fast single-stage detectors with detection performance higher than or similar to that of two-stage detectors. In experiments conducted with the PASCAL VOC 2007 benchmark dataset, we show that the proposed loss function and the online hard example mining scheme can improve the performance of single-stage object detectors.

Souce Code Identification Using Deep Neural Network (심층신경망을 이용한 소스 코드 원작자 식별)

  • Rhim, Jisu;Abuhmed, Tamer
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.373-378
    • /
    • 2019
  • Since many programming sources are open online, problems with reckless plagiarism and copyrights are occurring. Among them, source codes produced by repeated authors may have unique fingerprints due to their programming characteristics. This paper identifies each author by learning from a Google Code Jam program source using deep neural network. In this case, the original creator's source is to be vectored using a pre-processing instrument such as predictive-based vector or frequency-based approach, TF-IDF, etc. and to identify the original program source by learning by using a deep neural network. In addition a language-independent learning system was constructed using a pre-processing machine and compared with other existing learning methods. Among them, models using TF-IDF and in-depth neural networks were found to perform better than those using other pre-processing or other learning methods.

Handwritten One-time Password Authentication System Based On Deep Learning (심층 학습 기반의 수기 일회성 암호 인증 시스템)

  • Li, Zhun;Lee, HyeYoung;Lee, Youngjun;Yoon, Sooji;Bae, Byeongil;Choi, Ho-Jin
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • Inspired by the rapid development of deep learning and online biometrics-based authentication, we propose a handwritten one-time password authentication system which employs deep learning-based handwriting recognition and writer verification techniques. We design a convolutional neural network to recognize handwritten digits and a Siamese network to compute the similarity between the input handwriting and the genuine user's handwriting. We propose the first application of the second edition of NIST Special Database 19 for a writer verification task. Our system achieves 98.58% accuracy in the handwriting recognition task, and about 93% accuracy in the writer verification task based on four input images. We believe the proposed handwriting-based biometric technique has potential for use in a variety of online authentication services under the FIDO framework.

Development of Hand-drawn Clothing Matching System Based on Neural Network Learning (신경망 모델을 이용한 손그림 의류 매칭 시스템 개발)

  • Lim, Ho-Kyun;Moon, Mi-Kyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1231-1238
    • /
    • 2021
  • Recently, large online shopping malls are providing image search services as well as text or category searches. However, in the case of an image search service, there is a problem in that the search service cannot be used in the absence of an image. This paper describes the development of a system that allows users to find the clothes they want through hand-drawn images of the style of clothes when they search for clothes in an online clothing shopping mall. The hand-drawing data drawn by the user increases the accuracy of matching through neural network learning, and enables matching of clothes using various object detection algorithms. This is expected to increase customer satisfaction with online shopping by allowing users to quickly search for clothing they are looking for.