웹 2.0과 소셜미디어의 발전으로, 자발적이며 상호작용적 사용자들의 집단 지성을 활용하는 소셜 협업의 형태가 발전하고 있다. 사용자들의 참여(participation)와 대화(conversation), 소셜 세계의 커뮤니티(community)형성과 개방(openness), 연결(connectedness)을 기반으로 성장한 소셜 협업의 발전은 여러가지 형태로 진화돼 왔다. 온라인 상의 집단 협업, 크라우드 소싱이라고도 불리워지는 소셜 협업은 사용자 공동생산 구조, 제품기획 참여 및 문제해결, 크라우드소싱 마케팅 프로모션, 공동 재원 활용과 사회적 기업 등의 형태를 보이고 있다. 특히 사용자들과 함께 소셜 뉴스생산의 구조를 성공적으로 만들어가는 허핑턴포스트의 사례를 살펴보고 우리나라 온라인 뉴스에 대한 시사점과 사용자 중심의 소셜 협업 발전방안을 모색해보고자 한다.
실시간으로 뉴스 기사를 제공하는 온라인 뉴스 시스템이 널리 사용되면서, 사람들은 매 순간 속보와 새로운 뉴스 등 대량의 뉴스 기사에 노출되어 있다. 하지만 방대한 뉴스들로부터 사용자가 원하는 뉴스를 찾는 것은 매우 어려운 일이다. 따라서 개인 관심사에 따라 뉴스를 추천해주는 개인 맞춤형 뉴스 추천 시스템의 필요성이 증가되고 있다. 본 논문에서는 사용자의 관심사를 분석하여, 사용자의 관심사에 따라 관련된 뉴스를 자동으로 추천해주는 뉴스 추천 시스템을 설계 및 개발한다. 제안 시스템은 각 사용자가 북마크한 뉴스 기사와 읽은 뉴스 기사를 클러스터링하여 사용자별 프로파일을 생성한다. 또한 전체 뉴스 기사들을 클러스터링하여 주제 별로 분류한다. 사용자에게 뉴스를 추천하기 위해, 제안 시스템은 해당 사용자 프로파일에 포함된 각 클러스터에 대해 전체 뉴스 기사에 대한 클러스터들 중 가장 가까운 클러스터를 찾아 해당 클러스터 내의 뉴스 기사들을 거리 순으로 추천한다. 실제 구현된 시스템을 통해, 제안한 뉴스 추천 시스템이 각 개인에게 뉴스를 효과적으로 추천함을 보인다.
본 연구에 이용된 편집요인은 뉴스 카테고리, 사진기사, 굵은 활자체의 기사제목, 신문제호, 기사제목의 내용 등으로 구성되었다. 이 같은 요인 중 사진기사, 굵은 활자체의 기사제목, 기사제목의 내용 등 3개 요인만이 뉴스 이용자들의 기사선택에 영향을 미치는 것으로 나타났다. 이들 요인을 포털뉴스 이용시간의 차이에 따른 분석에서는 뉴스 카테고리, 굵은 활자체의 기사제목, 신문제호 등 3개 요인만이 영향을 미치는 것으로 나타났다. 뉴스 장르가 뉴스 이용자들의 기사선택에 미치는 영향에 대한 분석에서는 정치, 경제, 사회, 스포츠, 문화/연예, 국제, IT/과학 장르 중 사회, 문화/연예, 국제 등 3개 요인만이 이용자들의 기사선택에 영향을 미치는 것으로 나타났다. 이들 요인에 대한 남녀집단 간의 분석에서는 경제, 스포츠, 문화/연예, IT/과학 등 4개 장르에서 기사선택에 차이가 있는 것으로 나타났다. 본 연구는 오프라인 신문에 비해 다양한 방식으로 기사를 노출시키는 온라인 매체에서 전통적인 신문편집의 요소가 기사선택에 어떠한 영향을 미치는가를 파악하여 온 오프라인 신문 간 편집요소의 역할에 대한 차이와 온라인 매체에서의 효과적인 편집방안을 수립하는데 기초적인 단서를 제공할 목적으로 수행되었다.
본 연구는 포털뉴스와 언론사닷컴 뉴스댓글에 나타난 이용자들의 정치이데올로기 성향이 어떠한지를 살펴보기 위해 실시되었다. 이 같은 분석결과를 통해 포털뉴스와 언론사닷컴뉴스는 물론, 이들 뉴스를 이용하는 유권자들의 정치성향을 파악할 수 있었다. 본 연구에 필요한 자료 수집은 선거일 전 약 90일간 174개의 뉴스기사 댓글을 대상으로 이루어졌다. 분석은 네이버뉴스와 다음뉴스, 더불어민주당과 국민의힘, 언론사닷컴뉴스와 네이버뉴스 간 비교를 위해 t-test 기법으로 실시되었다. 분석결과 네이버뉴스 댓글은 보수정당 후보에 대한 긍정적인 내용의 비율이 더 높은 반면, 다음뉴스 댓글은 진보정당 후보에 대한 긍정적인 내용의 비율이 더 높았다. 따라서 네이버뉴스는 정치적으로 보수성향 이용자들이 더 많이 이용하는 반면, 다음뉴스는 진보성향 이용자들이 더 많이 이용하고 있다는 것을 알 수 있었다.
최근 스마트폰의 사용이 보편화되면서 많은 양의 온라인 뉴스가 다양한 경로를 통하여 서비스되고 있다. 한편, 실시간으로 제공되는 뉴스의 양이 방대해지면서, 언론사에서 톱 뉴스로 제공하는 토픽과 달리, 실제 사용자들에게 화제가 되고 있는 토픽을 선별하는 데 어려움이 있다. 많은 사용자들이 실생활에서 작성하고 공유하는 트위터는 실제 사람들 사이에 화제가 되고 있는 토픽을 담고 있는 경우가 많다. 이러한 트렌드를 뉴스와 연계시키면 화제가 되는 트렌드 뉴스를 사용자에게 제공할 수 있다. 본 논문에서는 클라이언트-서버 모델을 기반으로 실시간으로 사용자 트위터를 분석하여 추출된 트렌드를 기반으로 관련 뉴스를 검색하여 제공하는 시스템을 제안한다. 클라이언트를 통해 수집한 트위터 단문에서 서버는 화제가 되고 있는 트렌드를 추출하고, 이를 기반으로 Google 등을 통해 관련 뉴스를 검색하여 클라이언트에게 전달한다. 이 모든 과정을 실시간으로 제공하기 위한 알고리즘을 제안하고 프로토타입 시스템을 통하여 그 성능을 평가한다.
오늘날 웹의 발전으로 우리는 각종 언론 매체를 통해 온라인 기사를 쉽게 접하게 된다. 온라인 기사를 쉽게 접할 수 있게 된 만큼 거짓 정보를 진실로 위장한 가짜뉴스 또한 빈번하게 찾아볼 수 있다. 가짜뉴스가 전 세계적으로 대두되면서 국내에서도 가짜뉴스를 탐지하기 위한 팩트 체크 서비스가 제공되고 있으나, 이는 전문가 기반의 수동 탐지 방법을 기반으로 하며 가짜뉴스 탐지를 자동화하는 기술에 대한 연구가 계속해서 활발하게 이루어지고 있다. 기존 연구는 기사 작성에 사용된 문맥의 특성이나, 기사 제목과 기사 본문의 내용 비교를 통한 탐지 방법이 가장 많이 사용되고 있으나, 이러한 시도는 조작의 정밀도가 높아졌을 때 탐지가 어려워질 수 있다는 한계를 가진다. 따라서 본 논문에서는 기사 조작의 발달에 따른 영향을 받지 않기 위하여 기사의 진위 여부를 판단할 수 있는 검증기사를 함께 사용하는 방법을 제안한다. 또한 가짜뉴스 탐지 정확도를 개선시킬 수 있도록 실험에 사용되는 기사와 검증기사를 문서 요약 모델을 통해 요약하는 과정을 추가했다. 본 논문에서는 제안 알고리즘을 검증하기 위해 문서 요약 기법 검증, 검증기사 검색 기법 검증, 그리고 최종적인 제안 알고리즘의 가짜뉴스 탐지 정확도 검증을 진행하였다. 본 연구에서 제안한 알고리즘은 다양한 언론 매체에 적용하여 기사가 온라인으로 확산되기 이전에 진위 여부를 판단하는 방법으로 유용하게 사용될 수 있다.
온라인 뉴스에서 개인의 참여가 활성화 되면서 댓글의 중요성이 부각되고 있다. 최근엔 개인의 SNS(social networking site) 계정을 이용하여 댓글을 게재할 수 있는 소셜댓글 서비스가 활성화 되고 있다. 본 연구에서는 실제 온라인 뉴스 댓글 현황 데이터를 이용하여 (1) 댓글의 일반적 특성요소 중 일반댓글과 소셜댓글이 차이점을 보일 가능성이 있는 요소를 도출한 후, (2) 일반댓글에 비해 소셜댓글이 각 특성요소별로 어떻게 다른지 비교 분석하고, 마지막으로 (3) 소셜댓글 이용 업체별로 각 특성요소가 어떻게 달라지는지를 실증 분석해보았다. 이를 위해 기존문헌 조사 및 전문가 인터뷰를 진행하여 여섯 가지 특성요소를 도출하였다. 다음으로 SPSS Statistics의 t-test의 분석 방법을 사용하여, 소셜댓글과 일반댓글이 모든 요소에서 유의한 차이를 보임을 확인하였고, ANOVA와 Duncan test 결과 트위터와 페이스북 그룹 간 차이가 유의함을 확인하였다. 본 연구를 통해 소셜댓글의 실제적인 가치를 명확히 파악할 수 있을 뿐만 아니라, 소셜댓글을 이용한 악성댓글 문제 해결에 실마리를 제공하고, 개인, 기업, 정부기관 등을 주체로 다른 분야의 적용가능성도 살펴볼 수 있을 것으로 기대한다.
LEXIS/NEXIS는 미국의 LEXIS/NEXIS사에서 제공하는 온라인 데이터뱅크로 세계의 비즈니스 뉴스, 법률 및 국가에 관한 정보를 전문형태로 제공한다. 1973년 최초로 상업목적으로 전문을 제공하게 된 LEXIS/NEXIS사는 EMBASE 데이터베이스를 제공하는 영국의 REP사의 자회사이다. 현재 온라인 정보를 제공하는몇 개의 회사 가운데서 가장 많이 이용되고 있다. 미국 오하이오주 데이톤에 있는 LEXIS/NEXIS사의 LEXIS/NEXIS를 알아보자.
본 연구는 시나 웨이보(Sina Weibo)에 게재된 '산시성 린펀시 반점 붕괴 사건'이라는 인기뉴스(hot news)에 대한 댓글에 나타난 감정표현에 영향을 미치는 요인들을 살펴보았다. 연구결과, 첫째, 성별에 따라 감정표현에 차이가 나타났다. 여성은 남성보다 더 강한 분노, 실망, 슬픔, 비난 감정을 표현하였다. 둘째, 동부지역 이용자들의 감정표현 강도가 중부지역과 서부지역에 비하여 유의하게 높았다. 셋째, 이용자가 댓글에 참여하고 감정표현을 게시한 블로그의 총수량인 웨이보 수가 많을수록 감정표현이 더욱 강하게 나타났다. 넷째, 미인증 이용자는 인증된 이용자보다 실망, 슬픔의 감정표현이 더욱 강하였다. 본 연구는 중국의 온라인 여론형성 과정에서 감정표현의 영향 요인을 살펴봄으로써 서양의 트위터나 페이스북과 같은 소셜네트워크와 비교할 수 있다는 점에서 의의가 있으며, 온라인 뉴스분석에서 빅데이터 분석방법을 사용했다는 점에서도 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.