• Title/Summary/Keyword: 온도.습도 예측

Search Result 224, Processing Time 0.025 seconds

Web based Fault Tolerance 3D Visualization of IoT Sensor Information (웹 기반 IoT 센서 수집 정보의 결함 허용 3D 시각화)

  • Min, Kyoung-Ju;Jin, Byeong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-152
    • /
    • 2022
  • Information collected from temperature, humidity, inclination, and pressure sensors using Raspberry Pi or Arduino is used in automatic constant temperature and constant humidity systems. In addition, by using it in the agricultural and livestock industry to remotely control the system with only a smartphone, workers in the agricultural and livestock industry can use it conveniently. In general, temperature and humidity are expressed in a line graph, etc., and the change is monitored in real time. The technology to visually express the temperature has recently been used intuitively by using an infrared device to test the fever of Corona 19. In this paper, the information collected from the Raspberry Pi and the DHT11 sensor is used to predict the temperature change in space through intuitive visualization and to make a immediate response. To this end, an algorithm was created to effectively visualize temperature and humidity, and data representation is possible even if some sensors are defective.

The Artificial Neural Network based Electric Power Demand Forecast using a Season and Weather Informations (계절 및 날씨 정보를 이용한 인공신경망 기반 전력수요 예측 알고리즘 개발)

  • Kim, Meekyeong;Hong, Chuleui
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • This paper proposes the new electric power demand forecast model which is based on an artificial neural network and considers time and weather factors. Time factors are selected by measuring the autocorrelation coefficients of load demand in summer and winter seasons. Weather factors are selected by using Pearson correlation coefficient The important weather factors are temperature and dew point because the correlation coefficients between these factors and load demand are much higher than those of the other factors such as humidities, air pressures and wind speeds. The experimental results show that the proposed model using time and seasonal weather factors improves the load demand forecasts to a great extent.

A Correlation Study Between Fruit Wholesale Price And Weather Factor (과일 도매가격과 날씨 요인에 대한 상관관계 연구)

  • Chang, Jeong-Hyun;Kim, Ji-Won;Kwak, Da-eun;Aziz, Nasridinov
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.706-708
    • /
    • 2017
  • 노지에서 재배되는 실외작물의 경우 외부 환경에 노출되어 재배되기에 생육 또는 수학시기가 외부 요인에 많은 영향을 받는다. 이러한 외부 요인 중 과일의 당도 및 수확량에 많은 영향을 미치는 요인은 바로 날씨이다. 고온의 날씨 또는 저온의 날씨가 지속되거나 강한 풍속, 적절한 강수가 이루어지지 않을 경우 과일의 당도가 낮아지거나, 흠집이 발생할 수 있어 과일 도매가격에 영향을 미치게 된다. 본 논문에서는 월별 평균 온도, 강우량, 습도, 일사량, 최대풍속 등의 날씨 관련 데이터와 제사 또는 명절에 자주 사용되는 과실류인 배, 단감, 사과, 수박의 도매가격간의 상관관계를 분석을 통해 얻은 결과로 추후 농산물 가격 예측 또는 과일 가격 예측 연구에 기여를 하고자 한다.

Group Emotion Prediction System based on Modular Bayesian Networks (모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템)

  • Choi, SeulGi;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1149-1155
    • /
    • 2017
  • Recently, with the development of communication technology, it has become possible to collect various sensor data that indicate the environmental stimuli within a space. In this paper, we propose a group emotion prediction system using a modular Bayesian network that was designed considering the psychological impact of environmental stimuli. A Bayesian network can compensate for the uncertain and incomplete characteristics of the sensor data by the probabilistic consideration of the evidence for reasoning. Also, modularizing the Bayesian network has enabled flexible response and efficient reasoning of environmental stimulus fluctuations within the space. To verify the performance of the system, we predict public emotion based on the brightness, volume, temperature, humidity, color temperature, sound, smell, and group emotion data collected in a kindergarten. Experimental results show that the accuracy of the proposed method is 85% greater than that of other classification methods. Using quantitative and qualitative analyses, we explore the possibilities and limitations of probabilistic methodology for predicting group emotion.

Equipment for Measuring the Adiabatic Temperature Rise of Concrete by Compensating Heat Loss (열손실량 보정을 통한 콘크리트 단열온도상승량 예측 장치)

  • Jin, Eun-Woong;Kim, Chin-Yong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • Adiabatic temperature rise test for predicting heat of hydration in mass concrete is especially inconvenient in the field. In order to overcome the problem, the equipment to effectively and conveniently measure semi-adiabatic temperature change was developed. The main objective of this paper is to propose a new and simple equipment for measuring semi-adiabatic temperature rise by using insulation bottles. In order to predict exact heat loss of concrete using this device, it is required to assume the specific heat loss coefficient of the device by water temperature change inside the experimental device. According to experimental and analytical results, the adiabatic temperature rise does not have significant differences in changes of temperature and humidity of air, as well as initial temperature of water. By comparing adiabatic temperature rise tests, the equipment for measuring semi-adiabatic temperature change can be used to predict the hydration heat of concrete within sufficient accuracy.

Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do (부분최소제곱 구조방정식모형을 이용한 경기도 지역 산불 발생 요인에 대한 기상 및 수문학적 요인의 영향 분석)

  • Kim, Dongwook;Yoo, Jiyoung;Son, Ho Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.145-156
    • /
    • 2021
  • Forest fires have frequently occurred around the world, and the damages are increasing. In Korea, most forest fires are initiated by human activities, but climate factors such as temperature, humidity, and wind speed have a great impact on combustion environment of forest fires. In this study, therefore, based on statistics of forest fires in Gyeonggi-do over the past five years, meteorological and hydrological factors (i.e., temperature, humidity, wind speed, precipitation, and drought) were selected in order to quantitatively investigate causal relationships with forest fire. We applied a partial least squares structural equation model (PLS-SEM), which is suitable for analyzing causality and predicting latent variables. The overall results indicated that the measurement and structural models of the PLS-SEM were statistically significant for all evaluation criteria, and meteorological factors such as humidity, temperature, and wind speed affected by amount of -0.42, 0.23 and 0.15 of standardized path coefficient, respectively, on forest fires, whereas hydrological factor such as drought had an effect of 0.23 on forest fires. Therefore, as a practical method, the suggested model can be used for analyzing and evaluating influencing factors of forest fire and also for planning response and preparation of forest fire disasters.

Improving Accuracy of RDAPS Prediction Precipitation using Artificial Neural Networks (인공신경망을 이용한 RDAPS 강수량 예측 정확도 향상)

  • Shin, Ju-Young;Choi, Gi-An;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1013-1017
    • /
    • 2008
  • 이 연구는 기상수치예보 모델 중 지역수치예보모델인 RDAPS 모델을 이용하여 강우자료를 예측한 값과 실제 강우관측지점에서의 강우량을 비교해 보고 RDAPS 예측량의 정확도를 높이기 위한 연구이다. RDAPS 모델의 자료는 00UTC와 12UTC에 3시간 누적 자료를 48시간에 대해서 생성하고, 30km 격자망에 대한 정보를 담고 있기 때문에 1시간 간격으로 측정된 지점 강우량과의 비교를 위해서는 관측지점과 근거리 정보를 찾고 1시간 간격의 관측 자료를 3시간 누적강우량으로 바꾸는 전처리 과정이 필요하다. 실제 강우예측이 어려움을 겪는 것처럼 RDAPS의 예측 강우량과 관측 강우량은 큰 차이를 보이는 것으로 나타났다. 예측 강우량의 정확도를 높이고자 인공신경망을 적용하였다. 인공신경망이란 뇌기능의 특성 몇가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다. 강우수치예측 자료 외에도 RDAPS 모델에서 얻을 수 있는 풍향, 풍속, 상대습도, 기압, 온도 등의 다른 수치자료들을 이용하여 인공신경망을 이용하여 자료들의 패턴을 시뮬레이션 하여 정확도가 높은 예측값을 얻을 수 있었다.

  • PDF

Prediction of Heat and Water Distribution in Concrete due to Changes in Temperature and Humidity (온도와 습도의 변화에 따른 콘크리트 내부의 열, 수분 분포 예측)

  • Park, Dong-Cheon;Lee, Jun-Hae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.31-32
    • /
    • 2020
  • Concrete changes its internal moisture distribution depending on the external environment, and changes in the condition of the material's interior over time affect the performance of the concrete. These effects are closely related to the long-term behavior and durability of concrete, and the degree of deterioration varies from climate to climate in each region. In this study, we use actual climate data from each region with distinct climates. A multi-physical analysis based on the method was conducted to predict the difference and degree of deterioration rate by climate.

  • PDF

Energy Management System Design Based on Fast Simulation Using Machine Learning Model (기계학습 모델을 이용한 고속 시뮬레이션 기반의 건물 에너지 관리 시스템 설계)

  • Lee, Eun-joo;Kim, Jeong-min;Ryu, Kwang-ryel
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.13-15
    • /
    • 2016
  • 에너지 소비가 큰 건물은 내부 온/습도, 이산화탄소 농도, 미세먼지 농도 등의 일정 공기 질을 유지하면서 에너지 비용을 최소화할 수 있는 제어계획을 수립하는 것이 필요하다. 기존 건물에서 실내 환경의 운영은 설정된 실내 환경 값을 기준을 벗어나면 설비 기기를 제어하는 방식으로 이루어진다. 이는 단 시간에 고에너지를 투입하여 장비를 가동시키므로 에너지 소모가 크며 peak 전력이 높아 에너지 비용이 크다는 문제가 있다. 따라서 온도를 포함한 환경이 변해가는 상황을 예측하고 사전에 에너지 사용 계획을 수립하여 관리 제어를 수행함으로써 예열부하 등의 불필요한 에너지 손실을 절감하려 한다. 이를 위해 실내 환경이 변화하는 것을 예측하고 후보 제어계획으로 제어를 수행할 때 소요되는 에너지가 어느 정도인지 시뮬레이션하여 제어계획의 적합도를 평가한다. 기존 EnergyPlus와 같은 시뮬레이션 도구는 모델이 복잡하여 시뮬레이션에 많은 시간이 필요하기 때문에 환경 변화를 반영하기 위해 주기적으로 재수립되는 수많은 제어계획 데이터를 단시간에 시뮬레이션하기에 부적합하다. 본 논문에서는 빠른 시뮬레이션을 위해 실제 운영 데이터와 에뮬레이션을 통해 획득한 운영 데이터를 기반으로 학습 알고리즘을 이용하여 제어계획 적용 시의 미래 상황을 예측한다.

  • PDF

Prediction of Defect Rate Caused by Meteorological Factors in Automotive Parts Painting (기상환경에 따른 자동차 부품 도장의 불량률 예측)

  • Pak, Sang-Hyon;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.290-291
    • /
    • 2021
  • Defects in the coating process of plastic automotive components are caused by various causes and phenomena. The correlation between defect occurrence rate and meteorological and environmental conditions such as temperature, humidity, and fine dust was analyzed. The defect rate data categorized by type and cause was collected for a year from a automotive parts coating company. This data and its correlation with environmental condition was acquired and experimented by machine learning techniques to predict the defect rate at a certain environmental condition. Correspondingly, the model predicted 98% from fine dust and 90% from curtaining (runs, sags) and hence proved its reliability.

  • PDF