Energy Management System Design Based on Fast Simulation Using Machine Learning Model

기계학습 모델을 이용한 고속 시뮬레이션 기반의 건물 에너지 관리 시스템 설계

  • Lee, Eun-joo (Dept. of Electrical and Computer Engineering, Pusan-National University) ;
  • Kim, Jeong-min (Dept. of Electrical and Computer Engineering, Pusan-National University) ;
  • Ryu, Kwang-ryel (Dept. of Electrical and Computer Engineering, Pusan-National University)
  • 이은주 (부산대학교 전기전자컴퓨터공학과) ;
  • 김정민 (부산대학교 전기전자컴퓨터공학과) ;
  • 류광렬 (부산대학교 전기전자컴퓨터공학과)
  • Published : 2016.07.12

Abstract

에너지 소비가 큰 건물은 내부 온/습도, 이산화탄소 농도, 미세먼지 농도 등의 일정 공기 질을 유지하면서 에너지 비용을 최소화할 수 있는 제어계획을 수립하는 것이 필요하다. 기존 건물에서 실내 환경의 운영은 설정된 실내 환경 값을 기준을 벗어나면 설비 기기를 제어하는 방식으로 이루어진다. 이는 단 시간에 고에너지를 투입하여 장비를 가동시키므로 에너지 소모가 크며 peak 전력이 높아 에너지 비용이 크다는 문제가 있다. 따라서 온도를 포함한 환경이 변해가는 상황을 예측하고 사전에 에너지 사용 계획을 수립하여 관리 제어를 수행함으로써 예열부하 등의 불필요한 에너지 손실을 절감하려 한다. 이를 위해 실내 환경이 변화하는 것을 예측하고 후보 제어계획으로 제어를 수행할 때 소요되는 에너지가 어느 정도인지 시뮬레이션하여 제어계획의 적합도를 평가한다. 기존 EnergyPlus와 같은 시뮬레이션 도구는 모델이 복잡하여 시뮬레이션에 많은 시간이 필요하기 때문에 환경 변화를 반영하기 위해 주기적으로 재수립되는 수많은 제어계획 데이터를 단시간에 시뮬레이션하기에 부적합하다. 본 논문에서는 빠른 시뮬레이션을 위해 실제 운영 데이터와 에뮬레이션을 통해 획득한 운영 데이터를 기반으로 학습 알고리즘을 이용하여 제어계획 적용 시의 미래 상황을 예측한다.

Keywords