• Title/Summary/Keyword: 온도 저감

Search Result 844, Processing Time 0.041 seconds

Application of BASINS/WinHSPF for Pollutant Loading Estimation in Soyang Dam Watershed (소양강댐 유역의 오염부하량 산정을 위한 BASINS/WinHSPF 적용)

  • Yoon, Chun-Gyeong;Han, Jung-Yoon;Jung, Kwang-Wook;Jang, Jae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.201-213
    • /
    • 2007
  • In this study, the Batter Assessment Science Integrating point and Nonpoint Sources (BASINS 3.0)/window interface to Hydrological Simulation Program-FPRTRAN (WinHSPF) was applied for assessment of Soyang Dam watershed. WinHSPF calibration was performed using monitoring data from 2000 to 2004 to simulate stream flow. Water quality (water temperature, DO, BOD, nitrate, total organic nitrogen, total nitrogen, total organic phosphorus and total phosphorus) was calibrated. Calibration results for dry-days and wet-days simulation were reasonably matched with observed data in stream flow, temperature, DO, BOD and nutrient simulation. Some deviation in the model results were caused by the lack of measured watershed data, hydraulic structure data and meteorological data. It was found that most of pollutant loading was contributed by nonpoint source pollution showing about $98.6%{\sim}99.0%$. The WinHSPF BMPRAC was applied to evaluate the water quality improvement. These scenarios included constructed wetland for controlling nonpoint source poilution and wet detention pond. The results illustrated that reasonably reduced pollutant loadin. Overall, BASINS/WinHSPF was found to be applicable and can be a powerful tool in pollutant loading and BMP efficiency estimation from the watershed.

The Analysis of Kinetic Parameters for BNR Process Simulation in Domestic Wastewater (국내하수에 적합한 BNR 공정 시뮬레이션을 위한 최적 동력학적 계수 산출)

  • Kim, Dae-Sung;Park, Myung-Gyun;Ahn, Ho-Chul;Ahn, Won-Sik;Lee, Eui-Sin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1385-1390
    • /
    • 2006
  • 외국에서 ASM 모델의 BNR 적용 연구결과를 국내 하수에 적용하기에는 하수농도, 온도, 슬러지농도 등이 국내와는 달라 적용상 무리가 있다. 본 연구에서 BNR 시뮬레이션을 위한 입력 자료로 활용되는 인자들은 IAWPRC task group에서 제안하는 값들을 사용하되 국내 하수성상에서 필요로 하는 인자들은 직접 실험을 통하여 부분적으로 구해냄으로써 모델 시뮬레이션의 신뢰도를 높이고자 하였다. F/M비의 변화량과 1/SRT과의 관계로부터, 종속영양미생물 생산계수 $Y_H$값을 구한결과, 0.40mg VSS/mg COD였다. 이것을 ASM No.2d에 적용하기 위하여 mg cell COD formed/mg COD oxidized 단위로 환산한 결과 0.58을 나타냈다. H 하수처리장의 1차 침전지 하수를 이용하여 호기성상태에서 OUR Test를 통한 미생물에 의한 유기물 섭취시 산소섭취율 변화를 측정하였다. 호기성상태와 무산소상태에서 구한 쉽게 분해되는 용존성유기물(Ss)값을 비교해보면 각각 35.5mg/L와 39.9mg/L로 약간의 차이는 있으나 유사한 값을 보여주고 있다. 시뮬레이션을 위한 동력학적 계수 중 무산소 상태에서 종속영양미생물의 ${\mu}_{max,H}$$3.56d^{-1}$로 나타났고, 호기성상태에서는 구하면 ${\mu}_{max,H}$$4.2d^{-1}$로 산출되었다. 종속영양미생물의 사멸계수 $b_H$를 구하기 위한 실험에서 초기 OUR의 10%이내가 될 때까지 걸린 시간은 7일정도가 걸렸으며, 사멸률 $b_H$$0.043hr^{-1}$로 나타났다. 독립영양미생물의 최대비성장률 ${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발 및 활용할 수 있으며, 특히, 한국주식시장에 적합한 거래전략은 반전거래전략이고, 이 전략의 유용성은 투자자가 설정한 투자기간보다 더욱 긴 분석기간의 주식가격정보에 의하여 최대한 발휘될 수 있음을 확인하였다.(M1), 무역적자의 폭, 산업의 생산

  • PDF

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Kinetics of the Reaction of Carbon Dioxide with AMP and Piperazine (AMP에 Piperazine을 첨가한 CO2 흡수 동역학)

  • Jang, Sang-Yong;Song, Ju-Seouk;Cho, Sang-Won;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.485-494
    • /
    • 2000
  • According to the worldwide interest in controlling $CO_2$ which contributes to green house effect. new techniques of reducing $CO_2$ are under development. We have developed new technique for reducing $CO_2$. In low $CO_2$ concentration. the chemical absorption method is useful. In this study. the kinetics of the reaction between $CO_2$ and the sterically hindered amine solution with piperazine. have been investigated from measurements of the rate of absorption of $CO_2$ in the stirred vessel that has a horizontal liquid-gas interface, in the temperature range $30{\sim}70^{\circ}C$. The experiments were carried out in the range 10.130~20.260 kPa of partial pressure of $CO_2$, and in aqueous $2.0kmol/m^3$ AMP solution with $0{\sim}0.4kmol/m^3$ piperazine The experimental results are as follows: 1) The absorption rate of $CO_2$ into aqueous AMP + piperazine solution is gett ng faster than that of aqueous AMP absorbents with temperature. Because the activation energy of piperazine 57.147 kJ/mol is higher than that of AMP 41.7kJ/mol. therefore the effect of piperazine on absorption rate increases with temperature. 2) Compared with aqueous AMP solution. the absorption rate of $CO_2$ into AMP + piperazine solution increases from 6.33% at $30^{\circ}C$ to 12% at $70^{\circ}C$, so AMP + piperazine solution is thought to be a better than AMP solution, 3) The reaction rate constants of piprazine in aqueous AMP solution with $CO_2$ have been determined as 217.21, 420.46, 707.00 and $3162.167m^3/kmol{\cdot}s$ respectively at 30, 40, 50 and $70^{\circ}C$ but these results are higher than those of Xu which were 186.7. 367.32. 693.01. $2207.65m^3/kmol{\cdot}s$ at 30, 40, 55, $70^{\circ}C$in aqueous MDEA solution. So the regression analysis of the data has led to the following equation In $k_p$ =28.324-6934.7/T.

  • PDF

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

A Study on Comparison of Outdoor Wind Pressure Performance According to Outdoor Exposure and Acceleration Deterioration Methods of Structural Sealants Applied to Curtain Wall (커튼월에 적용된 구조용 실링재의 옥외폭로와 실내복합열화 처리방법에 따른 내풍압성능 비교연구)

  • Jang, Pil Sung;Hong, Soon Gu;Kim, Sung Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.279-287
    • /
    • 2018
  • Sealants are an important element of modern architecture and serve as a building protection against weathering by providing barriers against ingress of moisture, air, and other materials. Exposure to a variety of environments often reduces lifespan due to changes in physical, chemical and mechanical characteristics, and UV, humidity, and temperature expansion are important issues that are directly related to durability. In this study, a combined deterioration test chamber was developed to simulate the environment of the open air as an instrument for verifying the durability of structural sealing materials indoors. In order to replicate special weather conditions, such as yellow dust, acid rain, and contamination by microorganisms, it was deemed impossible to replicate the outdoor environment by 100 %, and the results of the results of the results of the external exposure test of the structural sealant and the combined deterioration testing device. As a result of the displacement test of the outdoor exposure test, it was determined that the sealant was breaking apart and that it would be smooth, and the displacement would be up to three times greater than the initial material value of 1 year. The displacement test results of the combined deterioration test device show the tendency to deteriorate, decreasing the elasticity and tensile characteristics. In the case of denatured silicon, the current 400 cycles have been completed to confirm 12 months of degradation of the external exposure. The deformation of the test specimen cannot be verified with the naked eye, so it is considered that the conditions of the specimen are more stable than the silicon sealant. As a result of the outdoor exposure test, if the combined deterioration test device is structured and proposed in the relevant guidance or specification, the anticipated lifespan of 12 months in the actual use environment can be verified indoors and below 3 months later, economically.

Assessment of Consumer's Food Safety Perceptions and Practices (소비자의 식품안전 인지도와 안전행동 평가)

  • Park, Ji-Yeon;Choi, Eun-Hui;Choi, Jung-Hwa;Shim, Sang-Kook;Park, Hyung-Soo;Park, Ki-Hwan;Moon, Hye-Kyung;Ryu, Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Consumers are very concerned about food safety as the risk with food increased. This study was conducted to evaluate the perceptions and practices of consumers on food safety in order to collect some information for the development of consumer education program. Total 500 consumers were asked to answer for survey constituted with 6 questions of generic information, 4 of food safety perceptions and 8 of food safety practices from June to July, 2006. More than half of respondents (51.8%) were unsatisfied with the food safety management of government while the individual practices on food safety were satisfactory. Especially, most respondents (98.7%) checked the expiration date of food when they purchased and 97% of respondents were washed hands before food preparation. The higher food safety perception, the better food safety practices of consumers. These results suggest that the systematic and continuous educations on food safety hazards and the principles of sanitation management are necessary for safe food handling and perception on food safety.

Characterization of Pretreatment for Barley straw by Alkaline Solutions (염기 용매를 이용한 보릿짚의 전처리 특성)

  • Kim, Kyoung-Seob;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • Lignocellulose is difficult to hydrolyze due to the presence of lignin and the technology developed for cellulose fermentation to ethanol is not yet economically viable. However, recent advances in the extremely new field of biotechnology for the ethanol production are making it possible to use of Agriculture residual biomass, e.q., Barley straw, because of their several superior aspects as Agriculture residual biomass; low lignin, high contents of carbohydrates. Barley straw consists of 39.78% cellulose (glucose), 22.56% hemicelluloses and 19.27% lignin. Pretreatment of barley straw using NaOH pretreatment solutions concentration with 2%, temperature $85^{\circ}C$ and reaction times 1 hr were investigates. $NH_4OH$ pretreatment condition was solutions concentration with 15%, temperature $60^{\circ}C$, and reaction times 24hr were investigates. Furthermore, enzymatic saccharification using cellulose at $50^{\circ}C$, pH 4.8, 180 rpm for conversion of cellulose contained in barley straw to monomeric sugar. The pretreatment of barley straw using NaOH and $NH_4OH$ can significantly improve enzymatic saccharification of barley straw by extract more lignin and increasing its accessibility to hydrolytic enzymes. The result showed NaOH pretreatment extracted yield of lignin was 24.15%. $NH_4OH$ pretreatment extracted yield of lignin was 29.09%. Shaccharification of barley straw pretreatment by NaOH for 72hr and pH 4.8 result in maximum glucose concentration 15.39g/L (58.40%) and by $NH_4OH$ for 72hr and pH 4.8 result in maximum glucose concentration 16.01g/L (64.78%).

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.

Changes of Pork Antigenicity by Heat, Pressure, Sonication, Microwave, and Gamma Irradiation (물리적 처리에 의한 돼지고기의 항원성 변화)

  • Kim, Seo-Jin;Kim, Koth-Bong-Woo-Ri;Song, Eu-Jin;Lee, So-Young;Yoon, So-Young;Lee, So-Jeong;Lee, Chung-Jo;Park, Jin-Gyu;Lee, Ju-Woon;Byun, Myung-Woo;Ahn, Dong-Hyun
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.709-718
    • /
    • 2009
  • The purpose of this study was to search for physical treatments to reduce allergenicity of pork. Physical treatments such as heating, autoclave, microwave, sonication, and irradiation have been used for food processing or reduction of allergenicity. The porcine serum albumin (PSA), known as a major allergen in pork, was extracted after physical treatments. The antigenicity of pork extracts by heating (80 and $100^{\circ}C$ for 20 min), autoclave ($121^{\circ}C$ for 5, 10, and 30 min), and microwave (for 5 and 10 min) was significantly decreased. Especially, the binding ability of p-IgG to pork extracts by autoclave for 30 min showed the greatest decrease (about 3%) in physical treatments. However, the antigenicity of pork was unaffected by sonication and irradiation treatment. These results indicated that the autoclave treatment was the most effective method to reduce the antigenicity of pork.