• Title/Summary/Keyword: 온도효과

Search Result 5,573, Processing Time 0.047 seconds

Effect of Glass Frit on the Sintering Behavior and Mechanical Properties of 3Y-ZrO2 (3Y-지르코니아 조성에서 Glass Frit의 첨가량에 따른 소결 거동 및 기계적 특성의 변화)

  • Lee, Gyu-Sun;Kwon, Eun-Ja;Lee, Chae Hyun
    • Journal of dental hygiene science
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 2009
  • The effect of glass frit on the sintering behavior and mechanical properties of 3 mol% $Y_2O_3$-doped zirconia($3Y-ZrO_2$) have been studied. Up to 30 wt% of glass frit was added to $3Y-ZrO_2$. Sintering was performed in a box furnace up to $1300^{\circ}C$ for specimens with glass frit and $1600^{\circ}C$ for specimens without glass frit in air for 1h. Relative density and mechanical properties were measured to investigate the effect of glass frit. The addition of glass frit enhanced both sintered density and mechanical properties of $3Y-ZrO_2$ which is suitable for dental applications. Maximum sintered density 93.3% of theoretical density was obtained with the specimens containing 30 wt% frit sintered at $1300^{\circ}C$, whereas the optimum amount of frit addition for mechanical properties was determined as 10 wt%. Maximum value of strength, fracture toughness, and Vickers microhardness for specimens with glass frit were 206 MPa, $3.4\;MPa\;m^{1/2}$, and 5.3 GPa, respectively.

  • PDF

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods (기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석)

  • Kang, Seung-Gu;Choi, Hong-Jun;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.1-11
    • /
    • 2011
  • Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.

Simulation of the Effects of the A1B Climate Change Scenario on the Potential Yield of Winter Naked Barley in Korea (A1B 기후변화 시나리오가 국내 가을 쌀보리의 잠재수량에 미치는 영향 모사)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Lee, Deog-Bae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Seul-Bi;Kang, Ki-Keong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.192-203
    • /
    • 2011
  • The CERES-Barley crop simulation model was used to assess the impacts of climate change on the potential yield of winter naked barley in Korea. Fifty six sites over the southern part of the Korean Peninsula were selected to compare the climate change impacts in various climatic conditions. Based on the A1B climate change scenarios of Korea, the present climatological normal (1971-2000) and the three future ones (2011-2040, 2041-2070, and 2071-2100) were considered in this study. The three future normals were divided by three environmental conditions with changes in: (1) temperature only, (2) carbon dioxide concentration only, and (3) both temperature and carbon dioxide concentration. The agreement between the observed and simulated outcomes was reasonable with the coefficient of determination of grain yield to be 0.78. We concluded that the CERES-Barley model was suitable for predicting climate change impacts on the potential yield of winter naked barley. The effect of the increased temperature only with the climate change scenario was negative to the potential yield of winter naked barley, which ranges from -34 to -9% for the three future normals. However, the effect of the elevated carbon dioxide concentration only on the potential yield of winter naked barley was positive, ranging from 6 to 31% for the three future normals. For the elevated conditions of both temperature and carbon dioxide concentration, the potential yields increased by 8, 15, and 13% for the 2011-2040, 2041-2070, and 2071-2100 normals, respectively.

Hydration and Textural Characteristics of Brown Treated with Superheated Steam Process (과열 수증기 공정에 의하여 처리한 현미의 수화 및 조직특성)

  • 김철진;이수정;조용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1190-1194
    • /
    • 2000
  • 과열 수증기 공정처리 효과가 현미의 수화 및 조직특성에 미치는 영향을 조사하기 위하여 현미(동진)를 과열수증기의 압력이 $1kg_{f}/$\textrm{cm}^2$$로 유지되는 상태에서 수증기의 온도를 127, 150, 16$0^{\circ}C$로 달리하면서 과열 수증기 처리를 하였다. 수분흡수속도는 수침온도(60~8$0^{\circ}C$)에 따라서 현미와 백미가 각각 0.03569~0.1049 $cm/min^{-1/2}$와 0.03474~0/1618 $cm/min^{-1/2}$의 범위를 보였다. 현미와 백미의 활성화에너지는 각각 6.98 및 9.59 cal/mole을 나타내어 열수화 특성이 다름을 보였다. 한편, 과열 수증기 처리현미의 경우 $65^{\circ}C$에서의 확산계수는 18.96$\times$$10^{-5}$$\textrm{cm}^2$/min)와 처리하지 않은 현미(22.28$\times$$10^{-5}$$\textrm{cm}^2$/min)의 중간 값을 나타내었다. 과열 수증기처리 후 현미의 표면조직은 균열이 발생하였는데, 수증기 온도가 높을수록 균열의 정도가 컸다. 이상과 같은 수증기 처리는 현미 강층의 구조를 변화시킬 뿐만 아니라, 내부 전분층의 부분적 균열에도 효과적으로 작용하는 결과를 보인 것으로 예측된다.

  • PDF

Temperature Characteristics Analysis of Major Heating Region According to Cooling Device Location of Grid-Connected Photovoltaic Inverter (계통연계형 태양광 인버터의 냉각장치 위치에 따른 주요발열부 온도특성 해석)

  • Kim, Min-Seok;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.799-804
    • /
    • 2014
  • To combine to the power transmission, photovoltaic inverter is demanded, because the photovoltaic system is generated direct current power. However, photovoltaic inverter is sensitive to high temperature. In the temperature rising such as at noon and on summer, efficiency of machine is decreased due to the loss increment. Because this problem causes national energy loss according to the expanding the photovoltaic industry, countermeasure is demanded. There, in this paper, we installed a cooling system using a thermoelement regardless of the temperature. Also, we analyze the cooling effect according to the position of two fans which improve the effect maximize.

A Experimental and Numerical Studies of Thermal Flow Motion in a Geothermal Chamber (동결챔버내의 열 흐름에 관한 실험 및 수치해석적 연구)

  • 송원근;김영진;이형일
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.219-228
    • /
    • 2003
  • Numerical and experimental studies were conducted on the temperature distribution of a buried steel pipe and surrounding granite frozen soils in the closed system. The relationship between unfrozen water content and temperatures was analysed by laboratory test. The thermal conductivity measurements were made to compare the results with a formula presented by Lachenbruch. A steel container model that consists of a freezing chamber and a buried circular steel pipe was built for the laboratory temperature measurements. The time temperature records were measured experimentally, and those records were compared with numerical results obtained from FEM analysis in order to verify the feasibility. The latent heat effect on the granite frozen soils in the numerical study was considered.

Early-Age Autogenous Shrinkage of HPC Columns by FBG Sensors (매립형 FBG 센서를 이용한 고성능콘크리트 기둥의 초기재령시 자기수축)

  • Jang, Il-Young;Yun, Ying-Wei;Kim, Hee-Ho;Lee, Kang-Deuk;Kim, Seong-Kyum;Park, Jin-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.229-230
    • /
    • 2009
  • This paper carried out the early age autogenous shrinkage research of large scaled HPC column specimens by embedded Fiber Bragg-Grating (FBG) strain sensor. Temperature compensation for FBG strain sensor by thermocouple was also attempted.

  • PDF

여름철 맛 좋은 닭 생산, 사료관리가 좌우한다

  • 한상우
    • KOREAN POULTRY JOURNAL
    • /
    • v.36 no.7 s.417
    • /
    • pp.75-78
    • /
    • 2004
  • 금년 여름은 어느해 보다 더울 거라는 기상청 발표가 있듯이 농가에서는 여름철 준비에 한창이다. 지난해의 경우 6월 1달동안 $30^{\circ}C$를 넘는 기온이 3차례에 그쳤지만, 금년은 16일 현재 9차례나 $30^{\circ}C$를 웃돌면서 올여름 더위를 예고하고 있다. 최근 사료가격이 고가행진을 보이는 가운데 사료빈의 단열로 생산성 향상 효과를 기하는데 관심이 집중되고 있다. 그동안 각 농가에 설치된 사료탱크(빈)가 한 낮의 태양에 노출되어 빈 내부가 더워질 경우 사료의 영양소가 파괴되고 기호성이 낮아지면서 닭의 생산성에 악영향을 가져온다는 문제가 제기되어왔다. 즉, 사료의 온도가 $60^{\circ}C$가 넘을 경우 단백질의 변성이 나타나는 것으로 알려지고 있으며, 직사광선이 내리쬘 때 사료빈내 온도는 $70^{\circ}C$까지도 높아지는 것으로 알려지고 있다. 그러나 농가에서는 한 여름 사료탱크내 온도상승에 대해서는 관심이 부족했던 것이 사실이다. 중동이나 더운 지역에서는 알루미늄 커버를 사료빈에 덮어 완벽하게 단열을 하고 있는 것을 쉽게 발견할 수 있다. 최근 몇 년동안 사료회사와 일부 양계인들은 이런 문제점을 보완하기 위해 사료빈에 흰 페인트를 칠하는 농가도 있었고, 사료빈을 중심으로 차광망을 설치하는 곳도 있었으나 한여름 뜨거운 태양광선에서는 큰 효과를 기대하기 어려운 문제에 부닥쳐 왔다. 그러나 최근 이천과학축산기구(대표 한상우, 49)에서 새로운 재질을 이용한 단열방법이 개발되면서 농가들로부터 선풍적인 인기를 얻고 있어 고온기 생산성향상 방안의 일환으로 이를 소개할까 한다.

  • PDF

A Study on the Cooling Effect of a Water Fire Extinguishing Agent Containing NaBr (NaBr을 첨가한 물소화제의 냉각효과에 관한 연구)

  • 방창훈;김종석
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.6-12
    • /
    • 2001
  • The objective of the present work is to examine the cooling effect of a water fire extinguishing agent containing NaBr(30%, w/w). The carbon steel and teflon were used as a hot solid. The temperature on the hot solid surface ranged from $70^{\circ}c$ to $116^{\circ}c$ and water droplet size was 2.6 mm in the experiments. It is suggested that regardless of the hot solid material, the indepth temperature of the case of NaBr solution is lower than that of pure water and the variation of indepth temperature of teflon is higher than that of carbon steel. Regardless of the hot solid material, the time averaged heat flux of the case of pure water is higher than that of NaBr solution. the apparent evaporation time of the case of pure water is shorter than that of NaBr solution.

  • PDF