• Title/Summary/Keyword: 온도예측

Search Result 2,884, Processing Time 0.032 seconds

Prediction of a rectal temperature utilizing a thermal perception index (열감지지수를 활용한 신체온도의 예측)

  • ;Jerry D. Ramsey
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.75-79
    • /
    • 1998
  • 이 논문은 신체온도를 직접 측정하지 않고서 신체온도를 예상하는 모델을 연구한 것이다. 열감지지수 (TPI)를 개발하여 환경으로부터 느끼는 체감온도와 몸의 내부온도인 직장온도(Trec)와 몸의 외부온도인 피부온도 (Tsdin)를 예측하도록 하였다. Kwon과 Ramsey의 개발모델을 Goldman 의 모델과 비교해본 결과 정확도에 통계적으로 유의한 차이가 없었다. 회귀분석과 경험을 토대로 만든 체감온도를 예측할 수 있는 손쉬운 Kwon의 열감지지수 (KTPI)도 제시하였다. 대부분의 사람들이 쉽게 예측할 수 있도록 측정 또는 사용가능한 몇 개의 환경변수로부터 쉽게 몸의 예산 내부온도와 외부온도를 계산할 수 있게 단순화하였다.

  • PDF

A Study on the Temperature Prediction for Asphalt Pavement Using Field Monitoring Data (현장 계측자료를 이용한 아스팔트 포장체 온도 예측 연구)

  • An, Deok Soon;Park, Hee Mun;Eom, Byung Sik;Kim, Je Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.67-72
    • /
    • 2006
  • Temperature prediction in asphalt pavements is the one of most important factors for estimating the pavement response and predicting the pavement performance in the mechanistic-empirical pavement design. A study on temperature prediction procedure with variation of time and depth in asphalt pavements was conducted using field monitoring data. After selecting the temperature monitoring sections, the temperature sensors have been installed in different depths and the temperature data have been collected in every one hour. The developed pavement temperature prediction model was calibrated using field monitoring temperature data. The predicted temperatures were compared with measured temperatures at different seasons in selected sections. The results showed that the solar absorptivity and emissivity values in the fall is different from the values in other seasons. The predicted temperatures agree well with the measured temperatures at a wide range of temperatures. The temperature differences between each other fall in the range of ${\pm}3^{\circ}C$. It is also found that the regional characteristics did not affect the temperature prediction procedure.

Prediction Equation of Solar Collector Outlet Air Temperature (태양열(太陽熱) 집열기(集熱器) 출구온도(出口温度) 예측방정식(豫測方程式))

  • Moon, Soung Hong
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.48-53
    • /
    • 1985
  • 농산물 건조를 위하여 평판형 태양열 집열기를 이용할 경우 가열된 출구공기는 각종 농산물건조적온보다 일반적으로 고온이므로 이의 조절을 위한 출구공기 온도의 예측이 중요시 된다. 본 연구에서는 차원해석법(dimensional analysis)을 이용하여 평판형 집열기의 출구에서 나오는 가열된 공기의 온도를 예측하는 방법이 제시되었으며, 이 방법을 이용하여 집열기의 출구공기온도 예측방정식들이 유량별로 유도되었다. 이 방정식들로부터 구한 출구온도들은 실측한 값들과 잘 일치하였으며($R^2$=0.917~0.957) 또한 집열기의 효율을 나타내는 이론식이 출구공기온도 예측방정식으로 부터 직접 유도되었다.

  • PDF

Prediction of a rectal temperature utilizing a thermal perception index.

  • Kwon, Young G.;Jerry D.Ramsey
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.159-164
    • /
    • 1998
  • 이 논문은 신체온도를 직접 측정하지 않고서 신체온도를 예상하는 모델을 연구한 것이다. 열감지지수 (TPI)를 개발하여 환경으로부터 느끼는 체감온도와 몸의 내부온도인 직장온도(Tuec)와 몸의 외부온도인 피부온도 (Tskin)를 예측하도록 하였다. Kwon와 Ramsey의 개발모델을 Goldman의 모델과 비교해본 결과 정확도에 통계적으로 유의한 차이가 없었다. 회귀분석과 경험을 토대로 만든 체감온도를 예측할 수 있는 손쉬운 Kwon의 열감지수 (KTPI)도 제시하였다. 대부분의 사람들이 쉽게 예측할 수 있도록 측정 또는 사용가능한 몇 개의 환경변수로부터 몸의 예상 내부온도와 외부온도를 계산할 수 있게 단순화하였다.

  • PDF

Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration (데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측)

  • Kim, Yong-min;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • In this study, the PV output and module temperature values were predicted using the Meteorological Agency data and compared with actual data, weather, solar radiation, ambient temperature, and wind speed. The forecast accuracy by weather was the lowest in the data on a clear day, which had the most data of the day when it was snowing or the sun was hit at dawn. The predicted accuracy of the module temperature and the amount of power generation according to the amount of insolation decreased as the amount of insolation increased, and the predicted accuracy according to the ambient temperature decreased as the module temperature increased as the ambient temperature increased and the amount of power generated lowered the ambient temperature. As for wind speed, the predicted accuracy decreased as the wind speed increased for both module temperature and power generation, but it was difficult to define the correlation because wind speed was insignificant than the influence of other weather conditions.

A Prediction of Coal Ash Slagging for Entrained Flow Gasifiers (분류층 석탄가스화기 Slag 용융특성 예측)

  • Koo, Jahyung;Kim, Bongkeum;Kim, Youseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.108.1-108.1
    • /
    • 2010
  • 분류층 가스화기는 석탄과 산소(공기) 및 수증기가 반응하여 $1200{\sim}1600^{\circ}C$의 고온, 20~60기압의 고압에서 작동되어 합성가스를 생성하며 합성가스에 포함된 입자 및 황화합물 등을 정제설비를 통하여 정제 후 발전 및 화학원료로 사용한다. 석탄가스화 중 석탄에 포함된 대부분의 회분은 용융슬래그 형태로 가스화기 벽면을 따라 흘러 내려 가스화기 하부의 냉각수조에서 급랭되어 배출된다. 이때 용융슬래그의 원활한 배출을 위해서는 일정범위의 점도를 유지하는 것이 필요하다. 슬래그의 점도는 가스화기 온도 및 Ash의 조성에 따라 크게 변하며 가스화기 설계 및 운전 시 매우 중요한 변수이다. 따라서 최적의 설계 및 운전을 위해서는 Ash의 점도예측이 중요하며, 분류층 가스화기내부에서 Ash 점도 예측을 위한 DooVisco 프로그램을 개발하였다. DooVisco는 가스화기 내부에서 슬래그 용융온도 및 온도별 점도, 가스화기 최소 운전온도 및 석회석 투입 효과 분석뿐만 아니라 석탄의 혼합 사용 시의 특성 예측도 가능하도록 개발되었다. DooVisco는 슬래그 주요 4성분인 SiO2, Al2O3, CaO, FeO 성분에 대한 Phase Diagram을 이용하여 1차적으로 슬래그용융온도(Liquidus Temperature)를 예측하고, 주요 4 성분 외에 Na2O, MgO, K2O, TiO2 등을 고려한 Kalmanovich Model을 이용하여 점도를 예측한다. 최종적으로 슬래그 용융온도와 점도를 활용하여 분류층 가스화기 운전가능 온도범위를 예측한다. 개발된 DooVisco를 활용하여 300MW급 실증 IGCC 플랜트에 사용가능성이 있는 석탄을 대상으로 슬래그의 용융온도 및 점도 등을 예측하였으며 최적 운전을 위한 슬form점도 조절용 Flux인 석회석 투입량 등을 평가하였다. 평가 결과 슬래그 용융온도가 $1700^{\circ}C$ 이상으로 석회석 투입이 필요하다고 판단되었다. 약 가스화기 내부 온도를 $1500^{\circ}C$ 정도에서 원활한 운전을 위해서는 석탄 대비 약 10% 내외의 석회석 투입이 필요할 것으로 평가되었다. DooVisco는 분류층 가스화기 설 계시 가스화기 최적 운전 온도 설정 및 Flux 투입필요성, 종류, 투입량 선정에 활용될 수 있을 뿐만 아니라 플랜트 운전시 석탄의 탄종 적합성 등을 판단하는데 활용될 수 있을 것이라 판단된다.

  • PDF

Analysis on the Thermal Efficiency of Branch Prediction Techniques in 3D Multicore Processors (3차원 구조 멀티코어 프로세서의 분기 예측 기법에 관한 온도 효율성 분석)

  • Ahn, Jin-Woo;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Speculative execution for improving instruction-level parallelism is widely used in high-performance processors. In the speculative execution technique, the most important factor is the accuracy of branch predictor. Unfortunately, complex branch predictors for improving the accuracy can cause serious thermal problems in 3D multicore processors. Thermal problems have negative impact on the processor performance. This paper analyzes two methods to solve the thermal problems in the branch predictor of 3D multi-core processors. First method is dynamic thermal management which turns off the execution of the branch predictor when the temperature of the branch predictor exceeds the threshold. Second method is thermal-aware branch predictor placement policy by considering each layer's temperature in 3D multi-core processors. According to our evaluation, the branch predictor placement policy shows that average temperature is $87.69^{\circ}C$, and average maximum temperature gradient is $11.17^{\circ}C$. And, dynamic thermal management shows that average temperature is $89.64^{\circ}C$ and average maximum temperature gradient is $17.62^{\circ}C$. Proposed branch predictor placement policy has superior thermal efficiency than the dynamic thermal management. In the perspective of performance, the proposed branch predictor placement policy degrades the performance by 3.61%, while the dynamic thermal management degrades the performance by 27.66%.

Role of the prediction skill of near-surface temperature in seasonal forecasting: A case study of U.S. droughts (근지표면 온도 예측성이 계절적 예보에 미치는 영향: 미국 가뭄의 사례연구)

  • Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.73-73
    • /
    • 2021
  • 가뭄의 계절적 예측성을 개선하기 위해서는 대기-지면-해양의 상호 작용이 현실적으로 모의할 수 있는 지구 기후 예보 모델의 개선이 필수적이다. 제한적인 기후 예보 모델의 예측성으로 인하여 다중 기후 모델들의 다중 앙상블 계절 예보 시스템이 제안되었다. 2008년에 제안된 북미 다중 모델 다중 앙상블 시스템(North American Multimodel Multiensemble System; NMME)은 다양한 모델 개발팀의 참여로 현재까지 운영되면서 계절적 예측성 연구에 큰 이바지를 하였다. 본 연구에서는 NMME 프로젝트에 참여하는 기후 예보 모델들의 북방 여름철 근지표면 온도과 강우량의 예측성을 진단하고 이들의 상관 관계의 강도를 관측데이터와 비교 분석하였다. 대부분의 NMME 모델들에서는 관측데이터에서 보다 강한 음의 상관 관계를 보였다. 이런 근지표면 온도와 강우량의 강한 상관 관계로 우수한 근지 표면 온도 예보는 각각의 해마다 그 역할이 다른 것을 발견되었다. 예를 들어 가문 여름에는 우수한 근지표면 온도 예보가 강우량 예보에 도움이 되고 강우량이 많은 여름에는 우수한 근지표면 온도 예보는 오히려 강우량 예측성을 제한하게 된다. 따라서 기존의 기후 예보 모델들에서 근지표면 온도와 강우량의 상관관계를 사실적으로 나타낼 수 있도록 모델 개선이 요구된다. 마지막으로 관측데이터와 기후 모델데이터에서 태평양과 대서양의 해수면 온도와 미국의 북방 여름철 날씨의 관계를 비교하였다. 근지표면 온도과 강우량에 대한 제한적 예측성에 비해, 대부분의 NMME 기후 예보 모델들에서 해수면 온도의 예측기술은 우수함을 발견하였고 몇몇 모델들에서는 미국의 북방 여름철 기후에 영향력을 주는 대서양과 태평양의 지역까지 잘 모사하는 것을 발견하였다. 따라서 본 연구는 보다 우수한 기후 예보 기술을 위해 앙상블 평균 예보값만이 아닌 NMME의 계절적 예보를 선택적인 사용이 필요함을 제안하였고 앞으로 북미 대륙 뿐만이 아니라 유럽-아시아의 계절적 이상 기후 예측성에 대한 연구 필요성을 강조하였다.

  • PDF

Thermal Analysis of Electronic Devices in an Onboard Unit Considering Thermal Conduction Environment (열전도 환경을 고려한 전장탑재물의 소자 열 해석)

  • Kim Joon-Yun;Kim Bo-Gwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.60-67
    • /
    • 2006
  • Thermal analysis and prediction of electronic components is required to predict and optimize the reliability of onboard electronic unit employed in space vehicles. This paper introduces a methodology on thermal prediction that uses isothermal PCB model, thermal force model, thermal resistance matrix and superposition principle to calculate electronic devices temperatures undergoing thermal conduction environment. An example is Presented including a prediction result by this method and simulation results performed by commercial program.

Development of a Surface Temperature Prediction Model Using Neural Network Theory (신경망 이론을 이용한 노면온도예측모형 개발)

  • Kim, In Su;Yang, Choong Heon;Choi, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.686-693
    • /
    • 2014
  • This study presents a model that enables to predict road surface temperature using neural network theory. Historical road surface temperature data were collected from Road Weather Information System. They used for the calibration of the model. The neural network was designed to predict surface temperature after 1-hour, 2-hour, and 3-hour from now. The developed model was performed on Cheongwon-Sangju highway to test. As a result, the standard deviation of the difference of the predicted and observed was $1.27^{\circ}C$, $0.55^{\circ}C$ and $1.43^{\circ}C$, respectively. Also, comparing the predicted surface temperature and the actual data, R2 was found to be 0.985, 0.923, and 0.903, respectively. It can be concluded that the explanatory power of the model seems to be high.