• Title/Summary/Keyword: 온도분포해석

Search Result 965, Processing Time 0.037 seconds

Analysis of Temperature Distribution and Heat Loss for an Asymmetric Trapezoidal Fin (비대칭 사다리꼴 핀의 온도분포와 열손실 해석)

  • Kang, Hyung-Suk;Song, Nyeon-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.377-383
    • /
    • 2012
  • The temperature distribution of an asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For this asymmetric fin, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered simultaneously. The temperature profile with the variation of dimensionless fin length and height coordinates is shown. Also, the temperature variation at the bottom tip of the fin is presented as a function of the fin shape factor. Heat losses through the fin base and from each side are compared for variations in fin length. One of the results shows that temperature at the fin bottom tip decreases linearly as the fin shape factor increases.

Thermal Characteristics of Microheater for Gas Sensors (가스센서용 마이크로 히터의 발열특성)

  • Choi, Woo-Chang;Choi, Hyek-Hwan;Kwon, Tae-Ha;Lee, Myong-Kyo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.356-363
    • /
    • 1998
  • Using the results analyzed by FEM(Finite Element Method). the microheaters with the stress-balanced $Si_3N_4$(150 nm)/$SiO_2$(300 nm)/$Si_3N_4$(150 nm) diaphragms were fabricated by silicon micromachining techniques. Pt was used as microheater materials. Pt temperature sensor was fabricated to measure the temperature of microheaters. Resistance of temperature sensor and power dissipation of microheater were measured and calculated at the various temperatures. The thermal distribution of heater was examined by a IR thermoviewer. Measured and simulated results are compared and analyzed. The temperature coefficient of resistance of heater was about $0.00379/^{\circ}C$. Pt heater showed the power dissipation of about 51 mW at $300^{\circ}C$ and a uniform thermal distribution on the surface.

  • PDF

A study on the analysis model of heat conduction using the Galerkin Method (갤러킨 유한요소해석 방법을 이용한 열전도 해석 모델 구축에 관한 연구)

  • Kang, Seung-Goo;Kim, Dong-Jun;Lee, Jae-Young;Harada, Kazunori;Han, Byung-Chan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.337-340
    • /
    • 2012
  • 본 연구는 비선형 비정상 온도분포해석에 대하여 갤러킨 유한요소해석 방법을 응용하고 2차원 삼각형 요소를 사용하였다. 이에 대하여 실험값과 해석값을 비교한 결과 모든 실험체에서 0.96~1.03의 차이가 있었으며 10%의 오차 범위 안에 있었다.

  • PDF

Effect of Leading Edge Shape on the Blade Surface Temperature of a Partial Admission Supersonic Turbine (부분입사형 초음속 터빈의 블레이드 표면 온도에 블레이드 앞전 형상이 미치는 영향)

  • Lee, Sang-Do;Kim, Kui-Soon;Lee, In-Chul;Koo, Ja-Yae;Mun, In-Sang;Lee, Su-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper, numerical analysis of the surface gas temperature on turbine blades has been performed to investigate the temperature profiles characteristics of a partial admission supersonic turbine driven by high temperature and pressure gas of pyro-starter with two different types of turbine blade edge shape. In order to examine the surface gas temperature on turbine blades at initial starting, computations tlave been carried out at several turbine rotational speeds in the range of $0{\sim}10,000$ rpm for each type of turbine edge shape. "Sharp" edge and "Round" edge types were taken as the turbine edge shape factor. As turbine rotational speed increased, the average temperature of turbine blades was further decreased. It was also found that the surface temperature of turbine blades with a sharp edge was lower than round-type edge turbine blades.