• Title/Summary/Keyword: 오피니언마이닝

Search Result 152, Processing Time 0.021 seconds

The Analysis of Public Awareness about Literary Therapy by Utilizing Big Data Analysis - The aspects of convergence literature and statistics (빅데이터 분석을 통한 문학치료의 대중적 인지도 분석 - 국문학과 통계학의 융합적 측면)

  • Choi, Kyoung-Ho;Park, Jeong-Hye
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.395-404
    • /
    • 2015
  • This study is exploring objective awareness of literary therapy by consideration of popular perception about literary therapy through analysis of big data. The purpose of this study is the deduction of meaning information through analysis in the viewpoint of big data at online social network service(SNS) about 'literary therapy'. Accordingly, the main way of research became content analysis of keyword linked to literary therapy by utilizing opinion mining method related to text mining. The study mainly grasped 'literary therapy' and analyzed 'bibliotherapy' comparatively. The period of study was from Oct. 10th to Nov. 10th, 2014(during 30 days), and SNS such as blog or twitter became the subject of search. Through the result of study analysis, the conclusion that the spread of literary therapeutic prospect, structural harmony of literary therapeutic field, and the solidity of perceptional axis about literary therapy are needed can be drawn. This study is worthwhile because it can investigate popular awareness about literary therapy and can suggest alternative for invigoration of literary therapy.

Impact of Word Embedding Methods on Performance of Sentiment Analysis with Machine Learning Techniques

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.181-188
    • /
    • 2020
  • In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.

A Study on the Value Factors of Culture Consumers for Corporate Culture Marketing through Big Data Techniques (빅데이터 기법을 통한 기업 문화마케팅을 위한 문화소비자의 가치 요소 연구)

  • Oh, Se Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.31-36
    • /
    • 2020
  • Corporate Culture Marketing is a marketing tool that enhances a company's cultural image or conveys its image through culture. Culture Consumer value analysis is important predictive data in identifying the value and pursuit of life in individual consumption behavior, explaining the choice behavior of culture consumers, and serves as the basis for decision making. The research method was linked to the text mining and opinion mining techniques of big data, and extracted positive, negative and neutral words. The analysis targets culture consumers participating in concerts at Hyundai Card's 'Super Concert', which is subject to domestic consumers, and CJ ENM's 'KCON', which is subject to foreign consumers. The culture consumer value elements of corporate culture marketing are the basic conditions, and they were derived as 'Consensus Communication (Expression of Sensibility)', 'Participation Sharing(VIP Belonging)', 'Social Change Issue', 'Differentiating Services', 'Price Discount Benefit' and 'Location Quality'. In the future, we will need to foster 'Culture Technology Marketers' and apply them in areas such as arts management planning, cultural investment, cultural distribution, cultural space, Corporate Culture, CSR and K-pop marketing to enhance corporate interests and brand value and enhance brand value.

A Comparative Analysis of the Changes in Perception of the Fourth Industrial Revolution: Focusing on Analyzing Social Media Data (4차 산업혁명에 대한 인식 변화 비교 분석: 소셜 미디어 데이터 분석을 중심으로)

  • You, Jae Eun;Choi, Jong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.11
    • /
    • pp.367-376
    • /
    • 2020
  • The fourth industrial revolution will greatly contribute to the entry of objects into an intelligent society through technologies such as big data and an artificial intelligence. Through the revolution, we were able to understand human behavior and awareness, and through the use of an artificial intelligence, we established ourselves as a key tool in various fields such as medicine and science. However, the fourth industrial revolution has a negative side with a positive future. In this study, an analysis was conducted using text mining techniques based on unstructured big data collected through social media. We wanted to look at keywords related to the fourth industrial revolution by year (2016, 2017 and 2018) and understand the meaning of each keyword. In addition, we understood how the keywords related to the Fourth Industrial Revolution changed with the change of the year and wanted to use R to conduct a Keyword Analysis to identify the recognition flow closely related to the Fourth Industrial Revolution through the keyword flow associated with the Fourth Industrial Revolution. Finally, people's perceptions of the fourth industrial revolution were identified by looking at the positive and negative feelings related to the fourth industrial revolution by year. The analysis showed that negative opinions were declining year after year, with more positive outlook and future.

Latent topics-based product reputation mining (잠재 토픽 기반의 제품 평판 마이닝)

  • Park, Sang-Min;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.39-70
    • /
    • 2017
  • Data-drive analytics techniques have been recently applied to public surveys. Instead of simply gathering survey results or expert opinions to research the preference for a recently launched product, enterprises need a way to collect and analyze various types of online data and then accurately figure out customer preferences. In the main concept of existing data-based survey methods, the sentiment lexicon for a particular domain is first constructed by domain experts who usually judge the positive, neutral, or negative meanings of the frequently used words from the collected text documents. In order to research the preference for a particular product, the existing approach collects (1) review posts, which are related to the product, from several product review web sites; (2) extracts sentences (or phrases) in the collection after the pre-processing step such as stemming and removal of stop words is performed; (3) classifies the polarity (either positive or negative sense) of each sentence (or phrase) based on the sentiment lexicon; and (4) estimates the positive and negative ratios of the product by dividing the total numbers of the positive and negative sentences (or phrases) by the total number of the sentences (or phrases) in the collection. Furthermore, the existing approach automatically finds important sentences (or phrases) including the positive and negative meaning to/against the product. As a motivated example, given a product like Sonata made by Hyundai Motors, customers often want to see the summary note including what positive points are in the 'car design' aspect as well as what negative points are in thesame aspect. They also want to gain more useful information regarding other aspects such as 'car quality', 'car performance', and 'car service.' Such an information will enable customers to make good choice when they attempt to purchase brand-new vehicles. In addition, automobile makers will be able to figure out the preference and positive/negative points for new models on market. In the near future, the weak points of the models will be improved by the sentiment analysis. For this, the existing approach computes the sentiment score of each sentence (or phrase) and then selects top-k sentences (or phrases) with the highest positive and negative scores. However, the existing approach has several shortcomings and is limited to apply to real applications. The main disadvantages of the existing approach is as follows: (1) The main aspects (e.g., car design, quality, performance, and service) to a product (e.g., Hyundai Sonata) are not considered. Through the sentiment analysis without considering aspects, as a result, the summary note including the positive and negative ratios of the product and top-k sentences (or phrases) with the highest sentiment scores in the entire corpus is just reported to customers and car makers. This approach is not enough and main aspects of the target product need to be considered in the sentiment analysis. (2) In general, since the same word has different meanings across different domains, the sentiment lexicon which is proper to each domain needs to be constructed. The efficient way to construct the sentiment lexicon per domain is required because the sentiment lexicon construction is labor intensive and time consuming. To address the above problems, in this article, we propose a novel product reputation mining algorithm that (1) extracts topics hidden in review documents written by customers; (2) mines main aspects based on the extracted topics; (3) measures the positive and negative ratios of the product using the aspects; and (4) presents the digest in which a few important sentences with the positive and negative meanings are listed in each aspect. Unlike the existing approach, using hidden topics makes experts construct the sentimental lexicon easily and quickly. Furthermore, reinforcing topic semantics, we can improve the accuracy of the product reputation mining algorithms more largely than that of the existing approach. In the experiments, we collected large review documents to the domestic vehicles such as K5, SM5, and Avante; measured the positive and negative ratios of the three cars; showed top-k positive and negative summaries per aspect; and conducted statistical analysis. Our experimental results clearly show the effectiveness of the proposed method, compared with the existing method.

Automatic Extraction of Opinion Words from Korean Product Reviews Using the k-Structure (k-Structure를 이용한 한국어 상품평 단어 자동 추출 방법)

  • Kang, Han-Hoon;Yoo, Seong-Joon;Han, Dong-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In relation to the extraction of opinion words, it may be difficult to directly apply most of the methods suggested in existing English studies to the Korean language. Additionally, the manual method suggested by studies in Korea poses a problem with the extraction of opinion words in that it takes a long time. In addition, English thesaurus-based extraction of Korean opinion words leaves a challenge to reconsider the deterioration of precision attributed to the one to one mismatching between Korean and English words. Studies based on Korean phrase analyzers may potentially fail due to the fact that they select opinion words with a low level of frequency. Therefore, this study will suggest the k-Structure (k=5 or 8) method, which may possibly improve the precision while mutually complementing existing studies in Korea, in automatically extracting opinion words from a simple sentence in a given Korean product review. A simple sentence is defined to be composed of at least 3 words, i.e., a sentence including an opinion word in ${\pm}2$ distance from the attribute name (e.g., the 'battery' of a camera) of a evaluated product (e.g., a 'camera'). In the performance experiment, the precision of those opinion words for 8 previously given attribute names were automatically extracted and estimated for 1,868 product reviews collected from major domestic shopping malls, by using k-Structure. The results showed that k=5 led to a recall of 79.0% and a precision of 87.0%; while k=8 led to a recall of 92.35% and a precision of 89.3%. Also, a test was conducted using PMI-IR (Pointwise Mutual Information - Information Retrieval) out of those methods suggested in English studies, which resulted in a recall of 55% and a precision of 57%.

A Study on Social Media Sentiment Analysis for Exploring Public Opinions Related to Education Policies (교육정책관련 여론탐색을 위한 소셜미디어 감정분석 연구)

  • Chung, Jin-Myeong;Yoo, Ki-Young;Koo, Chan-Dong
    • Informatization Policy
    • /
    • v.24 no.4
    • /
    • pp.3-16
    • /
    • 2017
  • With the development of social media services in the era of Web 2.0, the public opinion formation site has been partially shifted from the traditional mass media to social media. This phenomenon is continuing to expand, and public opinions on government polices created and shared on social media are attracting more attention. It is particularly important to grasp public opinions in policy formulation because setting up educational policies involves a variety of stakeholders and conflicts. The purpose of this study is to explore public opinions about education-related policies through an empirical analysis of social media documents on education policies using opinion mining techniques. For this purpose, we collected the education policy-related documents by keyword, which were produced by users through the social media service, tokenized and extracted sentimental qualities of the documents, and scored the qualities using sentiment dictionaries to find out public preferences for specific education policies. As a result, a lot of negative public opinions were found regarding the smart education policies that use the keywords of digital textbooks and e-learning; while the software education policies using coding education and computer thinking as the keywords had more positive opinions. In addition, the general policies having the keywords of free school terms and creative personality education showed more negative public opinions. As much as 20% of the documents were unable to extract sentiments from, signifying that there are still a certain share of blog posts or tweets that do not reflect the writers' opinions.

A Heuristic Method for Extracting True Opinion Targets (의도된 의견 대상의 추출을 위한 경험적 방법)

  • Soh, Yun-Kyu;Kim, Han-Woo;Jung, Sung-Hun;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.39-47
    • /
    • 2012
  • The opinion of user on a certain product is expressed in positive/negative sentiments for specific features of it. In some cases, they are expressed for a holistic part of homogeneous specific features, or expressed for product itself. Therefore, in the area of opinion mining, name of opinion features to be extracted are specific feature names, holonyms for theses specific features, and product names. However, when the opinion target is described with product name or holonym, sometimes it may not match feature name of opinion sentence to true opinion target intended by the reviewer. In this paper, we present a method to extract opinion targets from opinion sentences. Most importantly, we propose a method to extract true target from the feature names mismatched to a intended target. First, we extract candidate opinion pairs using dependency relation between words, and then select feature names frequently mismatched to opinion target. Each selected opinion feature name is replaced to a specific feature intended by the reviewer. Finally, in order to extract relevant opinion features from the whole candidate opinion pairs including modified opinion feature names, candidate opinion pairs are rearranged by the order of user's interest.

Reliability Analysis of VOC Data for Opinion Mining (오피니언 마이닝을 위한 VOC 데이타의 신뢰성 분석)

  • Kim, Dongwon;Yu, Song Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.217-245
    • /
    • 2016
  • The purpose of this study is to verify how 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. It consists of three phases. In phase I, we constructed the sentiment lexicon after crawling 45,447 pieces of VOC (Voice of the Customer) on 26 auto companies from the car community and extracting the POS information and built a seven-sensitive domains. In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. In phase III, we investigated how 7 domains impact on the market share of three major (GM, FCA, and VOLKSWAGEN) auto companies by using linear regression analysis. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments, and the results from PCA reported the 7 sentiments connected with positivity, negativity and neutrality. As a result of linear regression analysis on model 1, we indentified that the sentimental factors have a significant influence on the actual market share. In particular, not only posotive and negative sentiment domains, but neutral sentiment had significantly impacted on auto market share. As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

An Analysis of Relationship between Social Sentiments and Cryptocurrency Price: An Econometric Analysis with Big Data (소셜 감성과 암호화폐 가격 간의 관계 분석: 빅데이터를 활용한 계량경제적 분석)

  • Sangyi Ryu;Jiyeon Hyun;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.91-111
    • /
    • 2019
  • Around the end of 2017, the investment fever for cryptocurrencies-especially Bitcoin-has started all over the world. Especially, South Korea has been at the center of this phenomenon. Sinceit was difficult to find the profitable investment opportunities, people have started to see the cryptocurrency markets as an alternative investment objects. However, the cryptocurrency fever inSouth Korea is mostly based on psychological phenomenon due to expectation of short-term profits and social atmosphere rather than intrinsic value of the assets. Therefore, this study aimed to analyze influence of people's social sentiment on price movement of cryptocurrency. The data was collected for 181 days from Nov 1st, 2017 to Apr 30th, 2018, especially focusing on Bitcoin-related post in Twitter along with price of Bitcoin in Bithumb/UPbit. After the collected data was refined into neutral, positive and negative words through sentiment analysis, the refined neutral, positive, and negative words were put into regression model in order to find out the impacts of social sentiments on Bitcoin price. After examining the relationship by the regression analyses and Granger Causality tests, we found that the positive sentiments had a positive relationship with Bitcoin price, while the negative words had a negative relation with it. Also, the causality test results show that there exist two-way causalities between social sentiment and Bitcoin price movement. Therefore, we were able to conclude that the Bitcoin investors'behaviors are affected by the changes of social sentiments.