• Title/Summary/Keyword: 오존 민감도

Search Result 50, Processing Time 0.074 seconds

Sensitivity Analysis of Parameters on Ozone Formation (오존 생성시 변수의 민감도 분석)

  • 김영제;양소희;김순태;홍민선
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.432-433
    • /
    • 2000
  • 고농도의 오존은 인간이나 동물의 건강뿐이 아닌 식물 및 토양등에도 중요한 영향을 미치는 것으로 확인되었으며, 따라서 날로 그 관심도가 증대되고 있다. 오존의 효율적 제어를 위해서는 오존 생성 메카니즘을 면밀히 분석하여 어떠한 물질 혹은 물질의 비율이 고농도 오존 발생과 연관성이 있는지에 대한 연구가 선행되어야 한다. 본 연구에서는 광화학 반응모델에서 초기농도 등에 따른 민감도 분석결과를 바탕으로 고농도 오존에 영향을 주는 지표를 살펴보고, 오존농도의 효율적 제어를 위한 기초자료로 활용하고자 한다. (중략)

  • PDF

Different Photosynthetic Responses of Black Cherry (Prunus serotina) with Different Sensitivities to Ambient Ozone Concentrations under Natural Conditions (자연상태에서 대기 중 오존 농도에 상이한 민감성을 가진 Black Cherry(Prunus serotina)의 상이한 광합성 반응)

  • Yun, Myoung-Hui;Chevone, Boris I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.132-140
    • /
    • 2008
  • Two different sensitivity classes of black cherry (Prunus serotina) under the natural growing environmental conditions were assessed adjacent to Air Monitoring Station located at Horton research center in Giles County, Virginia, USA. Ambient ozone concentrations, leaf gas exchange, and visible foliar injury were measured on-site during the growing seasons of 2000, 2001, and 2002. Ambient ozone exposures were sufficient to induce typical foliar visible injury corresponding with the reduction in photosynthetic activities only in sensitive black cherry. There were positive correlations between increasing cumulative ozone concentration and percent reduction in maximum net photosynthetic rates ($Pn_{MAX}$) under saturating light conditions and in quantum yield for carbon reduction (${\Phi}CO_2$) of sensitive black cherry compared to tolerant black cherry. There was a negative correlation between chlorophyll content and percent leaf injury in sensitive black cherry. Furthermore, $Pn_{MAX}$ was inversely related to percent leaf injury.

RETRIEVAL OF VERTICAL OZONE PROFILE USING SATELLITE SOLAR OCCULTATION METHOD AND TESTS OF ITS SCNSITIVITY (태양 엄폐법에 의한 연직 오존 분포 도출과 민감도 실험)

  • 조희구;윤영준;박재형;이광목;요코다타쓰야
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.119-138
    • /
    • 1998
  • Recently measurements of atmospheric trace gases from satellite are vigorous. So the development of its data processing algorithm is important. In this study, retrievalof vertical ozone profile from the atmospheric transmittance measured by satellite solar occultation method and its sensitivity to temperature and pressure are investigated. The measured transmittance from satellite is assumed to be given by the limb path transmittance simulated using annual averaged Umkehr data for Seoul. The limb path transmittance between wavelengths $9.89{\mu}m$ and $10.2{\mu}m$ is simulated with respect to tangent heights using the ozone data of HALOE SIDS(Hallogen Occultation Experiment Simulated Instrument Data Set) as an initial profile. Other input data such as pressure and temperature are also from HALOE SIDS. Vertical ozone profile is correctly retrieved from the measured transmittance by onion-peeling method from 50km to 11km tangent heights with the vertical resolution of 3km. The bias error of $\pm0.001$ in measured transmittance, the forced error of $\pm3K$ in each layer temperature, and the forced $\pm3%$ error in each layer pressure are assumed for sensitivity tests. These errors are based on the ADEOS/ILAS error limitation. The error in ozone amount ranges from -6.5% to +6.9% due to transmittance error, from -9.5% to +10.5% due to temperature error, and from -5.1% to +5.4% due to pressure error, respectively. The present study suggests that accurate vertical ozone profile can be retrieved from satellite solar occultation method. Accuracy of vertical temperature profile is especially important in the retrieval of vertical ozone profile.

  • PDF

Numerical Study on the Ozone Formation Sensitivity of Precursors Using Adjoint Model around the South-eastern Area of the Korean Peninsula (수반모형을 이용한 한반도 남동지역의 오존 전구물질의 오존 생성 민감도에 관한 수치연구)

  • Park, Soon-Young;Lee, Soon-Hwan;Lee, Hwa Woon;Kim, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.669-680
    • /
    • 2013
  • Ozone sensitivity analysis with respect to $NO_x$ is conducted around the south-eastern area of the Korean Peninsula. WRF-CMAQ modeling system is used to simulate a local circulation and high ozone episode day. To analyze the sensitivity, the adjoint model for CMAQ is adopted in this study. The purpose of current study is to investigate the location that affects a day time ozone concentration of these receptors on the high ozone episode day. Adjoint sensitivity analysis for Daegu shows two areas of influence. One is the range from the neighboring location to Pohang and it affects mainly on the same day as receptor time. The other is the remote south-eastern area from Daegu. This remote influence area suggests that $NO_x$ emitted on the previous day can change the ozone concentration at receptor time. The influence area for Busan, on the other hand, is originated only from the emission on the previous day because the sea-breeze occurred on the episode day makes low influence of surrounding emission. The cross sectional analysis reveals that $NO_x$ advection is important not only near the surface of land but also around the height of boundary layer.

Sensitivity Analysis of Ozone Concentration Model-3 with Change of VOCs Emissions. (VOCs 배출량변화에 따른 Model-3에 의한 오존농도 계산결과의 민감도 분석)

  • 남창진;이종범
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.91-92
    • /
    • 2001
  • 오존과 같은 광화학 오염물질은 생성과정이 복잡하여 오존 Episode를 예측하는 것은 매우 어렵다. 이러한 복잡한 광화학 반응 메카니즘을 해결하기 위해서 3차원 광화학 격자모델을 이용한다. 본 연구에서는 광화학 격자 모델중에서 US EPA가 기존의 대기확산모델이 가지는 문제점을 보완하여 제3세대 모델로 제시한 Models-3를 광화학 대기오염물질인 오존 예측을 위하여 선정하였다. (중략)

  • PDF

The Use of Indicator Species for Photochemical Ozone Sensitivity Analysis (지시종을 이용한 수도권 광화학 오존의 민감도 분석)

  • 김경렬;백성욱;이강웅;이동수;이미혜;조석연;이종범;이석조;한진석
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.137-138
    • /
    • 2003
  • 광화학 오존의 생성에 필수적인 3가지 요소 중에서 인위적으로 조절가능한 부분은 질소화합물과 유기화합물의 배출량이다. 하지만 배출량 감소를 유도하여 이들의 대기 중 농도를 줄일 경우 오존 발생이 저감될 지의 여부는 매우 다양하고 복잡한 화학반응들을 평가한 결과 단순한 상관 관계가 아닐 수 있다는 것이 밝혀져 있다. 이는 어떤 경우 이들 오염물질의 배출량 감소에도 불구하고 오존의 농도는 오히려 증가할 수 있는 가능성을 지시한다. 결국 오존발생에 관여하는 질소 화합물과 휘발성유기화합물의 정확한 정량적인 평가가 우선되어야 한다. (중략)

  • PDF

Characteristic Analysis of Tropospheric Ozone Sensitivity from the Satellite-Based HCHO/NO2 Ratio in South Korea (위성 기반 HCHO/NO2 비율을 통한 국내 대류권 오존 민감도 특성 분석)

  • Jinah Jang;Yun Gon Lee ;Jeong-Ah Yu;Kyoung-Hee Sung;Sang-Min Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.563-576
    • /
    • 2023
  • In this study nitrogen dioxide (NO2), formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI), OMI/ Microwave Limb Sounder (MLS) tropospheric column ozone (TCO), and Airkorea ground-based O3 data were analyzed to examine the photochemical reaction relationship between tropospheric ozone and its precursors nitrogen oxides (NOx) and volatile organic compounds (VOCs). As a result of analyzing the trend of long-term changes from 2006 to 2020 using OMI satellite data, TCO showed an increasing trend, NO2 steadily decreased, and HCHO continued to increase in Northeast Asia. In addition, formaldehyde nitrogen dioxide ratio (FNR; HCHO/NO2 ratio), an indicator of ozone sensitivity, is gradually increasing, which means that the VOC-limited regime is decreasing. This study conducted a sensitivity analysis of ozone generation using TROPOMI FNR and ground-based ozone (O3) over the recent years (2019~2022) to identify the possible cause for the continuous increase of ozone in Korea. Similar to the previous studies, VOC-limited and transitional regimes appeared in megacities, and VOC-limited regimes also appeared in areas where major power plants were located. In VOC-limited regimes, in other words, areas where NOx is excessively saturated, the reduction in NOx emissions may have weakened the ozone titration and thus led to the increase of ozone. Therefore, VOC emissions should be reduced in the short term rather than NOx emissions to reduce ozone concentrations under the VOC-limited regime.

Sensitivity Analysis of Satellite BUV Ozone Profile Retrievals on Meteorological Parameter Errors (기상 입력장 오차에 대한 자외선 오존 프로파일 산출 알고리즘 민감도 분석)

  • Shin, Daegeun;Bak, Juseon;Kim, Jae Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.481-494
    • /
    • 2018
  • The accurate radiative transfer model simulation is essential for an accurate ozone profile retrieval using optimal estimation from backscattered ultraviolet (BUV) measurement. The input parameters of the radiative transfer model are the main factors that determine the model accuracy. In particular, meteorological parameters such as temperature and surface pressure have a direct effect on simulating radiation spectrum as a component for calculating ozone absorption cross section and Rayleigh scattering. Hence, a sensitivity of UV ozone profile retrievals to these parameters has been investigated using radiative transfer model. The surface pressure shows an average error within 100 hPa in the daily / monthly climatological data based on the numerical weather prediction model, and the calculated ozone retrieval error is less than 0.2 DU for each layer. On the other hand, the temperature shows an error of 1-7K depending on the observation station and altitude for the same daily / monthly climatological data, and the calculated ozone retrieval error is about 4 DU for each layer. These results can help to understand the obtained vertical ozone information from satellite. In addition, they are expected to be used effectively in selecting the meteorological input data and establishing the system design direction in the process of applying the algorithm to satellite operation.